ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «СЕВЕРО- ОСЕТИНСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ КОЛЛЕДЖ» МИНИСТЕРСТВА ЗДРАВООХРАНЕНИЯ РСО-АЛАНИЯ

Утверждаю

Зам. Директора по УР ГБПОУ

«Северо-Осетинский

медицинский колледж» МЗ

РСО-Алания

Моргоева А.Г.

2023г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПРОГРАММЫ ПОДГОТОВКИ СПЕЦИАЛИСТОВ СРЕДНЕГО ЗВЕНА УЧЕБНОЙ ДИСЦИПЛИНЫ «ОП.09 «ОРГАНИЧЕСКАЯ ХИМИЯ»

По специальности: 33.02.01. «Фармация»

Форма обучения: очная

Курс: <u>1</u>

Владикавказ, 2023г.

Фонд оценочных средств по дисциплине **ОП.09 ОРГАНИЧЕСКАЯ ХИМИЯ** разработан на основе Федерального государственного образовательного стандарта (далее – ФГОС) по специальности 33.02.01. «Фармация»

Разработчики:

Гадзиева З.Б., преподаватель высшей квалификационной категории ГБПОУ СОМК МЗ РСО-Алания

Рассмотрена на заседании общемедицинской ЦМК

Протокол № 10 от «У» V/ 2023 г.

 Программа разработана на основе Федерального государственного образовательного стандарта среднего профессионального образования для специальности 33.02.01 ФАРМАЦИЯ

Рассмотрена и одобрена на заседании методического совета СОМК Старший методист

ГБДОУ СОМК МЗ РСО-А

Т. M. Караева

ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «СЕВЕРО- ОСЕТИНСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ КОЛЛЕДЖ»

МИНИСТЕРСТВА ЗДРАВООХРАНЕНИЯ РСО-АЛАНИЯ

Утверждаю	
ректора по УР ГБПОУ	вам.
«Северо-Осетинский	
цинский колледж» МЗ	M
РСО-Алания	
Моргоева А.Г.	-
» 2023г.	«

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПРОГРАММЫ ПОДГОТОВКИ СПЕЦИАЛИСТОВ СРЕДНЕГО ЗВЕНА УЧЕБНОЙ ДИСЦИПЛИНЫ «ОП.09 «ОРГАНИЧЕСКАЯ ХИМИЯ»

По специальности: 33.02.01. «Фармация»

Форма обучения: очная

Kypc: $\underline{1}$

Фонд оценочных средств по дисциплине	ОП.09 ОРГАНИЧЕСКАЯ ХИМИЯ разработан на основе
Федерального государственного образо	вательного стандарта (далее - ФГОС) по специальности
33.02.01. «Фармация»	
Разработчики:	
Гадзиева З.Б., преподаватель высшей ква	лификационной категории ГБПОУ СОМК МЗ РСО-
Алания	
Рассмотрена на заседании	Программа разработана на основе
общемедицинской ЦМК	Федерального государственного образовательного
н к	стандарта среднего профессионального
Протокол № от «»2023 г.	образования для специальности 33.02.01
	ФАРМАЦИЯ
	Рассмотрена и одобрена на заседании
Председатель ЦМК	методического совета СОМК
В.М. Малиев	Старший методист
	ГБПОУ СОМК МЗ РСО-А
	А.М. Караева

1. Паспорт фонда оценочных средств

Фонд оценочных средств разработан на основе Федерального государственного образовательного стандарта среднего профессионального образования (ФГОС СПО) по специальности 33.02.01 Фармация, утвержденного приказом Министерства образования и науки Российской Федерации от от 12 Мая2014 г. N 501 "Об утверждении федерального государственногообразовательного стандарта среднего профессионального образования по специальности 33.02.01 Фармация" и в соответствии с рабочей программой общеобразовательной учебной дисциплины ОП.08. Органическая химия.

ФОС включает контрольные материалы для проведения текущего контроля и промежуточной аттестации в форме дифференцированного зачета.

ФОС разработаны на основании положений:

- Федеральный государственный образовательный стандарт среднего (полного) общего образования, утвержденный приказом Министерства просвещения Российской Федерации Российской Федерации от 13 июня 2021 г. N 449"Об утверждении федерального государственного образовательного стандарта среднего профессионального образования по специальности 33.02.01 Фармация;
 - рабочие программы профессиональных модулей.

Цели и задачи учебной дисциплины – требования к результатам освоения:

На основе современных теоретических представлений о строении и реакционной способности основных классов органических соединений сформировать у студентов научную базу для освоения последующих профессиональных и специальных дисциплин.

- В результате освоения профессионального модуля обучающийся должен иметь практический опыт:
- работы по получению и исследованию химических свойств основных классов органических соединениями, в том числе: предельными, непредельными и ароматическими углеводородами, спиртами, альдегидами и кетонами, карбоновыми кислотами и их производными, аминами и нитросоединениями, углеводами, аминокислотами и белками, гетероциклическими соединениями.

В результате освоения дисциплины обучающийся должен уметь:

- доказывать с помощью химических реакций химические свойства веществ органической природы, в том числе лекарственных;
- идентифицировать органические вещества, в том числе лекарственные, по фи-зико-химическим свойствам;
- классифицировать органические вещества по кислотно основным свойствам;
- составлять формулы органических соединений и давать им названия. В результате освоения дисциплины обучающийся должен **знать**:
- теорию А.М. Бутлерова;
- классификацию органических соединений;
- строение, способы получения и реакционную способность основных классов органических соединений.

Результатом освоения программы учебной дисциплины является овладениеобучающимся профессиональными (ПК) и общими (ОК) компетенциями:

В рамках программы учебной дисциплины обучающимися осваиваются умения и знания

Код ПК, ОК	Умения	Знания
ПК 2.5,	- составлять название органического	- основные положения теории
ОК 01,	соединения по номенклатуре ИЮПАК;	химического строения
OK 02,	- писать изомеры органических	органических соединений А.М.
OK 04,	соединений;	Бутлерова;
ОК 07,	- классифицировать органические	- значение органических
OK 09	соединения по функциональным группам;	соединений как основы
ЛР 16	- классифицировать органические	лекарственных средств;
	соединения по кислотным и основным	- номенклатура ИЮПАК
	свойствам;	органических соединений;
	- предлагать качественные реакции на	- физические и химические
	лекарственные средства органического	свойства органических
	происхождения	соединений
	- способный планировать и реализовывать	- способы реализации
	собственное профессиональное и	собственного профессионального
	личностное развитие	и личностного развития

2. Результаты освоения учебной дисциплины

Результатом освоения учебной дисциплины являются освоенные умения и усвоенные знания, направленные на формирование общих и предметных компетенций.

Показатели оценки сформированности ОК, ПК, ЛР

Показатели оценки сформированности ОК, ПК, ЛР					
Результаты обучения	Критерии оценки	Методы оценки			
Знания: - основные положения теории химического строения органических соединений А.М. Бутлерова; - значение органических соединений как основы лекарственных средств; - номенклатура ИЮПАК органических соединений; - физические и химические свойства органических соединений; - способы реализации собственного профессионального и	- объясняет основные понятия; - анализирует значение органических соединений; - объясняет основные положения теории химического строения органических соединений A.M. Бутлерова; - дает физические и химические свойства органических соединений	Текущий контроль по каждой теме курса: - письменный опрос; - устный опрос; - решение ситуационных задач; - контроль выполнения практических заданий. Промежуточная аттестация проводится в форме экзамена. Экзамен включает в себя контроль усвоения теоретического материала; контроль усвоения практических умений			
личностного развития Умения: - составлять название органического соединения по номенклатуре ИЮПАК; - писать изомеры органических соединений; - классифицировать органические соединения по функциональным группам; - классифицировать органические соединения по кислотным и основным свойствам; - предлагать качественные реакции на лекарственные средства органического происхождения; - способный планировать и реализовывать собственное профессиональное и личностное развитие	- классифицирует органические соединения по функциональным группам, кислотным и основным свойствам; - выполняет качественные реакции на лекарственные средства органического происхождения; - выполняет практические задания; - решает типовые задачи; - обоснованно, четко и полно дает ответы на вопросы	- оценка результатов выполнения практической работы; — экспертное наблюдение за ходом выполнения практической работы			

Условия аттестации:

Оценка знаний при проведении итогового зачетного занятия проводится как по учёту работы в ходе семестра и результатам контрольной работы, так и опираетсяна итоговые показатели:

- 1) знание основных понятий;
- 2) умение применять полученные знания и навыки для решения задач;
- 3) проводить анализ полученных решений;

3. Программа оценивания контролируемой компетенции:

No	Контролируемые разделы дисциплины и их наименование	Код контролируемой компетенции	Наименование оценочного средства
№ 1	Разделы 1 Теоретические основы органической химии	ОК 09 ЛР 16	Устный опрос. Тестовые задания
№ 2	Раздел 2 Углеводороды	ПК 2.5, ОК 04, ОК 07 ЛР 16	Устный опрос. Тестовые задания
№3	Раздел 3. Гомофункциональные и гетерофункциональные соединения.	ПК 2.5, ОК 04, ОК 07 ЛР 16	Устный опрос. Тестовые задания

Проверка выполнения самостоятельной работы.

Самостоятельная работа направлена на закрепление студентами практических умений и знаний при подготовке к промежуточной аттестации

Самостоятельная подготовка студентов по дисциплине предполагает следующие виды и формы работы:

- Систематическая проработка конспектов занятий, учебной и специальной литературы.
- Выполнение расчетно-вычислительных заданий.
- Работа со справочной литературой.
- Подготовка дифференцированному зачету;

Задания на выполнение самостоятельной работы представлены в методических рекомендациях по организации и проведению самостоятельной работы студентов.

4. Тестовые задания для текущего контроля

4.1 Задания в тестовой форме по теме «Введение»

П/П Балг Содержание задания в тестовой форме ОК, ПК	No॒	Кол		Форми
Выберите один правильный вариант ПК 2	_/_		C	руемые
Выберите один правильный вариант ПК 2	11/11	бал-	Содержание задания в тестовои форме	ОК, ПК, ЛР
1 Бутен-1 и 2-метилиропен являются		ЛОВ		
1) одним и тем же веществом 2) гомологами 3) структурными изомерами 4) геометрическими изомерами 2			Выберите один правильный вариант	
1) одним и тем же веществом 2) гомологами 3) структурными изомерами 4) геометрическими изомерами 2	1	1	Бутен-1 и 2-метилпропен являются	ПК 2.5,
2) гомологами 3) структурными изомерами 4) геометрическими изомерами 0К (_		111 2.3,
3 структурными изомерами				ОК 09,
4) геометрическими изомерами 2 1 Из приведённых утверждений:				
Др Для приведённых утверждений: Для пентанола не характерна изомерия: Для пентанола не характерна изомерия: Для пентанола не характерна изомерия: Для пелько баль положения гидроксильной группы Для пелько положения гидроксильной группы Для пелько положения гидроксильной гидроксил				ОК 04,
Др Для приведённых утверждений: Для пентанола не характерна изомерия: Для пентанола не характерна изомерия: Для пентанола не характерна изомерия: Для пелько баль положения гидроксильной группы Для пелько положения гидроксильной группы Для пелько положения гидроксильной гидроксил				OK 07
1				ЛР 16
A. Атомы и группы атомов в молекулах оказывают друг на друга взаимное влияние. ОК (С. Б. Изомеры - это вещества с разным строением, но одинаковыми свойствами 1) верно только Б 3) верно только Б 3) верно А и Б 4) неверны оба утверждения ПК 2 3 1 Геометрические (цис-транс-) изомеры имеет 1) 2-хлорбутен-2 2) бутин-2 3) пропен 4) гексан ОК (С. ЛР) 4 1 Для пентанола не характерна изомерия: 1) геометрическая 2) углеродного скелета 3) положения гидроксильной группы 4) межклассовая ОК (С. ЛР) 5 1 Гомолог бутаналя - это 1) бутандиол-1,2 2 (Э бутанол-1 3) 2-метилпропаналь 4) гексановая кислота ОК (С. ЛР)				311 10
4. Атомы и группы атомов в молекулах оказывают друг на друга взаимное влияние. ОК (6	2	1	Из привелённых утвержлений:	ПК 2.5,
Взаимное влияние. Б. Изомеры - это вещества с разным строением, но одинаковыми свойствами 1) верно только А 2) верно только Б 3) верно А и Б 4) неверны оба утверждения Теометрические (цис-транс-) изомеры имеет 1) 2-хлорбуген-2 2) бутин-2 3) пропен 4) гексан 1) геометрическая 2) углеродного скелета 3) положения гидроксильной группы 4) межклассовая ТК 2 1) бутандиол-1,2 2) бутанол-1 3) 2-метилпропаналь 4) гексановая кислота				111(2.5,
Свойствами 1) верно только А 2) верно только Б 3) верно А и Б 4) неверны оба утверждения 3 1 Геометрические (цис-транс-) изомеры имеет 1) 2-хлорбутен-2 2) бутин-2 3) пропен 4) гексан 4 1 Для пентанола не характерна изомерия: 1) геометрическая 2) углеродного скелета 3) положения гидроксильной группы 4) межклассовая 5 1 Гомолог бутаналя - это 1) бутандиол-1,2 2) бутанол-1 3) 2-метилпропаналь 4) гексановая кислота			взаимное влияние.	ОК 04,
1) верно только А 2) верно только Б 3) верно только Б 3) верно ба угверждения ПК 2 1) 2-хлорбутен-2 2) бутин-2 3) пропен 4) гексан ОК (ЛР) 1 1 1 1 1 1 1 1 1			Б. Изомеры - это вещества с разным строением, но одинаковыми	
2) верно только Б 3) верно только Б 3) верно А и Б 4) неверны оба утверждения Теометрические (цис-транс-) изомеры имеет 1) 2-хлорбутен-2 2) бутин-2 3) пропен 4) гексан ТК 2 1) геометрическая 2) углеродного скелета 3) положения гидроксильной группы 4) межклассовая ТК 2 1) бутандля - это 1) бутандля - это 1) бутандля - зто 1) бутан			свойствами	OK 07
3) верно А и Б 4) неверны оба утверждения Теометрические (цис-транс-) изомеры имеет 1) 2-хлорбутен-2 2) бутин-2 3) пропен 4) гексан Треометрическая 2) углеродного скелета 3) положения гидроксильной группы 4) межклассовая Томолог бутаналя - это 1) бутандиол-1,2 2) бутандиол-1,2 2) бутандиол-1,3 3) 2-метилпропаналь 4) гексановая кислота			1) верно только А	ЛР 16
4) неверны оба утверждения ПК 2 3 1 Геометрические (цис-транс-) изомеры имеет ПК 2 1) 2-хлорбутен-2 ОК 0 2) бутин-2 ОК 0 3) пропен ОК 0 4) гексан ОК 0 1) геометрическая ОК 0 2) углеродного скелета ОК 0 3) положения гидроксильной группы ОК 0 4) межклассовая ПК 2 5 1 Гомолог бутаналя - это ПК 2 1) бутандиол-1,2 ОК 0 2) бутанол-1 ОК 0 3) 2-метилпропаналь ОК 0 4) гексановая кислота ОК 0			2) верно только Б	
3 1 Геометрические (пис-транс-) изомеры имеет ПК 2 1) 2-хлорбуген-2 ОК 0 2) бутин-2 ОК 0 3) пропен ОК 0 4) гексан ПК 2 4 Для пентанола не характерна изомерия: ПК 2 1) геометрическая ОК 0 2) углеродного скелета ОК 0 3) положения гидроксильной группы ОК 0 4) межклассовая ПК 2 5 1 Гомолог бутаналя - это 1) бутандиол-1,2 ОК 0 2) бутанол-1 ОК 0 3) 2-метилпропаналь ОК 0 4) гексановая кислота ОК 0			3) верно А и Б	
1) 2-хлорбутен-2 2) бутин-2 3) пропен 4) гексан 4 1 Для пентанола не характерна изомерия: 1) геометрическая 2) углеродного скелета 3) положения гидроксильной группы 4) межклассовая 5 1 Гомолог бутаналя - это 1) бутандиол-1,2 2) бутанол-1 3) 2-метилпропаналь 4) гексановая кислота			4) неверны оба утверждения	
2) бутин-2 3) пропен 4) гексан 1 Для пентанола не характерна изомерия: 1) геометрическая 2) углеродного скелета 3) положения гидроксильной группы 4) межклассовая 1 Гомолог бутаналя - это 1) бутандиол-1,2 2) бутанол-1 3) 2-метилпропаналь 4) гексановая кислота	3	1		ПК 2.5,
3) пропен 4) гексан 1 Для пентанола не характерна изомерия: 1) геометрическая 2) углеродного скелета 3) положения гидроксильной группы 4) межклассовая 5 1 Гомолог бутаналя - это 1) бутандиол-1,2 2) бутанол-1 3) 2-метилпропаналь 4) гексановая кислота				
4 1 Для пентанола не характерна изомерия: ПК 2 1) геометрическая ОК 0 2) углеродного скелета ОК 0 3) положения гидроксильной группы ОК 0 4) межклассовая ПК 2 5 1 Гомолог бутаналя - это 1) бутандиол-1,2 ОК 0 2) бутанол-1 ОК 0 3) 2-метилпропаналь ОК 0 4) гексановая кислота ЛР 1				ОК 04,
4 1 Для пентанола не характерна изомерия: ПК 2 1) геометрическая ОК 0 2) углеродного скелета ОК 0 3) положения гидроксильной группы ОК 0 4) межклассовая ПК 2 5 Гомолог бутаналя - это ПК 2 1) бутандиол-1,2 ОК 0 2) бутанол-1 ОК 0 3) 2-метилпропаналь ОК 0 4) гексановая кислота ЛР 1				OK 07
4 1 Для пентанола не характерна изомерия: ПК 2 1) геометрическая ОК 0 2) углеродного скелета ОК 0 3) положения гидроксильной группы ОК 0 4) межклассовая ПК 2 5 1 Гомолог бутаналя - это 1) бутандиол-1,2 ОК 0 2) бутанол-1 ОК 0 3) 2-метилпропаналь ОК 0 4) гексановая кислота ЛР 1			4) гексан	ЛР 16
1) геометрическая 2) углеродного скелета 3) положения гидроксильной группы 4) межклассовая Томолог бутаналя - это 1) бутандиол-1,2 2) бутанол-1 3) 2-метилпропаналь 4) гексановая кислота				
1) геометрическая 2) углеродного скелета 3) положения гидроксильной группы 4) межклассовая Томолог бутаналя - это 1) бутандиол-1,2 2) бутанол-1 3) 2-метилпропаналь 4) гексановая кислота	4	1	Для пентанола не характерна изомерия:	ПК 2.5,
3) положения гидроксильной группы 4) межклассовая Томолог бутаналя - это 1) бутандиол-1,2 2) бутанол-1 3) 2-метилпропаналь 4) гексановая кислота			1) геометрическая	
4) межклассовая ОК ОЛР 1 5 1 Гомолог бутаналя - это 1 (1) бутандиол-1,2 (2) бутанол-1 (3) 2-метилпропаналь (4) гексановая кислота ОК ОЛР 1			2) углеродного скелета	ОК 04,
4) межклассовая ЛР 1 5 1 Гомолог бутаналя - это 1) бутандиол-1,2 2 ПК 2 2) бутанол-1 3) 2-метилпропаналь 4) гексановая кислота ОК 0 ЛР 1			3) положения гидроксильной группы	OV 07
5 1 Гомолог бутаналя - это ПК 2 1) бутандиол-1,2 ОК 0 2) бутанол-1 ОК 0 3) 2-метилпропаналь ОК 0 4) гексановая кислота ЛР 1			4) межклассовая	
1) бутандиол-1,2 2) бутанол-1 3) 2-метилпропаналь 4) гексановая кислота ОК 0 ЛР 1				311 10
1) бутандиол-1,2 2) бутанол-1 3) 2-метилпропаналь 4) гексановая кислота ОК 0 ЛР 1	5	1	Гомолог бутаналя - это	ПК 2.5,
2) бутанол-1 3) 2-метилпропаналь 4) гексановая кислота ОК (ЛР 1			· ·	,
3) 2-метилпропаналь 4) гексановая кислота ОК О ЛР 1				ОК 04,
4) гексановая кислота				010.07
JIP I				OK 07
				JIP 16
6 1 Изомерами являются: ПК 2	6	1	Изомерами являются:	ПК 2.5,
			*	

1 1		1)	
		1) метилацетат и пропановая кислота	OK 04,
		2) пропанол и пропанон	
		3) бутен-1 и пропен-1	OK 07
		4) пентин и циклопентан	ЛР 16
7	1	Число π-связей в молекуле этина равно	ПК 2.5,
		1) 1 2) 2 3) 3 4) 4	
			ОК 04,
			ОК 07
			ЛР 16
			JIF 10
8	1	Соединения бутанол-1 и 2-метилпропанол-2 являются	ПК 2.5,
0	1	1) гомологами	11K 2.3,
		2) структурными изомерами	ОК 04,
		3) геометрическими изомерами	
		4) одним и тем же веществом	ОК 07
		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	ЛР 16
9	1	Гомологами являются	ПК 2.5,
		1) пропанол-1 и пропанон-2	
		2) метаналь и этаналь	ОК 04,
		3) пропановая кислота пропеновая кислота	OK 07
		4) бутан и циклобутан	ОК 07 ЛР 16
			JIP 10
10	1	Изомером пропаналя является:	ПК 2.5,
10	•	1) CH ₂ =CH - CH ₂ OH	1110 2.3,
		2) CH ₃ -CH ₂ -CH ₂ - CH=O	ОК 04,
		3) CH ₃ -CH=O	
		4) CH ₃ -CH ₂ - CH ₂ OH	OK 07
			ЛР 16
44			
11	1	Соединения бутанол-1 и первичный бутиловый спирт являются	ПК 2.5,
		1) гомологами 2) структурными изомерами	OV 04
		3) геометрическими изомерами	OK 04,
		4) одним и тем же веществом	ОК 07
		+) одним и тем же веществом	ЛР 16
12	1	Структурный изомер нормального гексана имеет название:	ПК 2.5,
		1) 3-этилпентан	
		2) 2-метилпропан	ОК 04,
		3) 2,2-диметилпропан	010.07
		4) 2,2-диметилбутан	OK 07
			ЛР 16
13	1	К соединениям, имеющим общую формулу CnH2n	ПК 2.5,
13	1	1) бензол	111\(\(\alpha\).\(\overline{\pi}\),
		2) циклогексан	OK 04,
		3) гексан	
		4) гексин	ОК 07
1		·/	

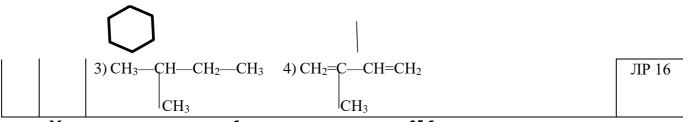
			ЛР 16
14	1	Изомером метилциклопентана является: 1) пентан	ПК 2.5,
		2) гексан	ОК 04,
		3) гексен	
		4) гексин	ОК 07 ЛР 16
			311 10
15	1	Число π-связей в молекуле пропеновой кислоты равно	ПК 2.5,
		1) 1 2) 2 3) 3 4) 4	ОК 04,
			OR 04,
			OK 07
			ЛР 16
16	1	Атом углерода в состоянии sp-гибридизации содержит молекула:	ПК 2.5,
		1) этанола	
		2) этаналя3) этандиол	ОК 04,
		4) этина	OK 07
			ЛР 16
17	1	Число π-связей в молекуле бутина-1 равно	ПК 2.5,
		1) 1 2) 2 3) 3 4) 4	111(2.5,
			ОК 04,
			ОК 07
			ЛР 16
18	1	Ma wayna wäyyy w yanaanya yyy y	ПК 2.5
10	1	Из приведённых утверждений: А. Свойства веществ определяются не только составом, но и строением	ПК 2.5,
		их молекул.	ОК 04,
		Б. Изомеры имеют одинаковый состав, но разное строение.	ОК 07
		1) верно только A 2) верно только Б	ЛР 16
		3) верно А и Б	
		4) неверны оба утверждения	
19	1	Пентен-1 и гексен-1 являются	ПК 2.5,
		1) одним и тем же веществом 2) структурными изомерами	ОК 04,
		3) геометрическими изомерами	
		4) гомологами	ОК 07 ЛР 16
			J11 1U
20	1	Циклобутан и транс-бутен-2 являются	ПК 2.5,
		1) геометрическими изомерами	OI/ 04
		2) одним и тем же веществом 3) гомологами	ОК 04,
		4) изомерами	OK 07
			12

	ЛР 16
21 1 Геометрические (цис-транс-) изомеры и	меет: ПК 2.5,
1) бутен-2	Mee1.
2) пентен-2	ОК 04,
3) пропин	074.07
4) бутан	OK 07
	ЛР 16
22 1 В молекуле ацетилена имеются	ПК 2.5,
1) две σ- и две π-связи	,
2) две σ- и три π-связи	OK 04,
3) три о- и одна л-связь	OK 07
4) три σ- и две π-связи	ЛР 16
	JII 10
23 1 Гомологами являются	ПК 2.5,
1) глицерин и этиленгликоль	
2) уксусная кислота и уксусный альдегид	OK 04,
3) бутен и бутадиен 4) пропаналь и бутаналь	OK 07
4) пропаналь и бутаналь	ЛР 16
24 1 Циклопентан и пентен-2 являются	OK1
1) геометрическими изомерами	ПК1.6
2) одним и тем же веществом	ПК2.1
3) гомологами 4) межклассовыми изомерами	ПК2.2
25 1 Две π-связи содержатся в молекуле	ПК 2.5,
1) этена 2) бутана 3) бутена 4) эти:	
, , , , , , , , , , , , , , , , , , , ,	OK 04,
	ОК 07
	UK 07
	ЛР 16

Оценочная шкала:

10% ошибок – «отлично» (22 -25 правильных ответов);

20% ошибок – «хорошо» (20- 21 правильных ответов);


30% ошибок – «удовлетворительно» (17-19 правильных ответов)

4.2.Задания в тестовой форме по теме «Алканы»

$N_{\underline{0}}$	Кол		Форми-
Π/Π	-BO	Содержание задания в тестовой форме	
11/11	бал-	Содержание задания в тестовои форме	руемы еОК,
	ЛОВ		ПК,
			ЛР
	В	ыберите один правильный вариант	
1	1	При крекинге бутана не образуется:	ПК 2.5,
		1) водород и пропан; 3) ацетилен и пропилен; 2) этан и этен; 4) сажа и пропан	ОК 04,
			ОК 07
			ЛР 16
2	1	В реакции полимеризации не могут вступать	ПК 2.5,
		1) алканы 2) алкены 3) алкины 4) алкадиены	ОК 04,
			ОК 07
			ЛР 16
3	1	Бромную воду не обесцвечивает	ПК 2.5,
		1) бутадиен-1,2 2) пропин	ОК 04,
		3) 2-метилпропан 4) 2-метилпропен	016.07
			ОК 07 ЛР 16
4	1	С водородом в присутствии катализатора не реагирует	ПК 2.5,
-		1) бензол 2) бутен 3) толуол 4)бутан	OK 04,
			OK 07
			ЛР 16
5	1	Какие реакции характерны для предельных углеводородов:	ПК 2.5,
		1) обмена; 2) присоединения;	0.74.0.4
		3) замещения; 4) полимеризации	OK 04,
		з) замещения, — т) полимеризации	ОК 07
			ЛР 16
6	1	Какой из алканов не способен к реакции ароматизации:	ПК 2.5,
		1) 2-метилгексан 2) н-октан 3) 3,4- диметилгептан 4) 3-метилпентан	ОК 04,
			ОК 07
			ЛР 16
7	1	Изомеризацией пентана можно получить:	ПК 2.5,
		1) пропан 3) бутан;	ОК 04,
		2) 2-метилбутан; 4) 2-метилпентан	
			OK 07
			ЛР 16
8	1	Газ без цвета и запаха; легче воздуха; при пиролизе образует водород и соединение, которое при тримеризации превращается в вещество,	ПК 2.5,
		п соединение, которое при тримеризации превращается в вещество,	

		обладающее ароматическими свойствами, - это	
		1) этан 2) этен 3) метан 4) ацетилен	OK 04,
		1) этан 2) этен 3) метан 4) ацетилен	OK 07
9	1	П	ЛР 16
9	1	Превращение бутана в бутен относится к реакции:	ПК 2.5,
		1)полимеризации; 2)дегидрирование; 3)дегидратации; 4)изомеризации	ОК 04,
			OK 07
10	1	Неверно одно из следующих утверждений: «Получение этилена из	ЛР 16 ПК 2.5,
10	1	этана является реакцией	11K 2.3,
		1) дегидрирования; 2) каталитической;	ОК 04,
		3) обратимой; 4) экзотермической	ОК 07
			ЛР 16
11	1	Этан вступает в реакции	ПК 2.5,
		1) разложения и замещения 2) гидрирования и гидролиза 3) дегидратации и замещения 4) горения и гидрирования	ОК 04,
			ОК 07
			ЛР 16
12	1	2,3-Диметилпентан вступает в реакцию	ПК 2.5,
		1) поликонденсации 2) присоединения 3) замещения 4) полимеризации	ОК 04,
			OK 07
10			ЛР 16
13	1	2-Метилбутан не вступает в реакцию полимеризации, т.к. 1) является углеводородом	ПК 2.5,
		2) в его молекуле нет пи-связей	ОК 04,
		3) в его молекуле есть тетраэдрические структуры	OV 07
		4) его молекула несимметрична	ОК 07 ЛР 16
14	1	Укажите неверное утверждение:	ПК 2.5,
		Реакция хлорирования метана - это реакция	
		1) замещения; 2) цепная свободнорадикальная;	ОК 04,
		3) каталитическая; 4) гомогенная	OK 07
			ЛР 16
15	1	При окислении метана не образуется:	ПК 2.5,
		1) спирт 2) альдегид 3) кислота 4) этан	OK 04,
			OK 07
16	1	Пропан не вступает в реакцию с	ЛР 16
10	1	1) хлором 2) кислородом 3) азотной кислотой 4) водой	ПК 2.5,
			ОК 04,
			OK 07
			ЛР 16

17	1	Нитрование 3-метилпентана протекает по механизму	ПК 2.5,
		1) замещения; 2) присоединения	111(2.3,
			ОК 04,
		3) полимеризации; 4) обмена	OIC 07
			ОК 07 ЛР 16
18	1	Укажите неверное утверждение: Для метана характерны	ПК 2.5,
10	1	1) реакция замещения	11K 2.3,
		2) наличие π- связи в молекуле	ОК 04,
		3) sp ³ -гибридизация орбиталей атома углерода в молекуле	010.07
		4) горение на воздухе	ОК 07 ЛР 16
19	1	Какое вещество X будет промежуточным в схеме: этан → X → бутан:	ПК 2.5,
	1	Rance bemeerbo A oyder upomenty to individe exeme. Stail 7 A 7 oylan.	1110 2.3,
		1) пропан 2) бромэтан 3) этилен 4) бутадиен	ОК 04,
			OI/ 07
			ОК 07 ЛР 16
20	1	Метан можно получить в реакции:	ПК 2.5,
	•	1) карбида алюминия с водой 2) гидрирования ацетилена	1110 2.3,
		3) дегидратации метанола 4) гидратации карбида кальция	ОК 04,
			OK 07
			ЛР 16
21	1	В продукте реакции Вюрца число атомов углерода по сравнению с	ПК 2.5,
		исходным галогеналканом:	111(2.5,
		1) ooto ättag un ayayyyy	ОК 04,
		1) остаётся прежним; 3) увеличивается;	ОК 07
		2) уменьшается на один; 4) уменьшается вдвое	ЛР 16
22	1	Взаимодействие алканов с галогенами протекает под воздействием	ПК 2.5,
	_		111 2.3,
		1) AlCl ₃ 2) FeCl ₃	ОК 04,
		3) УФ-облучение 4) NH ₄ OH	OK 07
			ЛР 16
23	1	Верны ли следующие суждения о свойствах углеводородов?	ПК 2.5,
		А. Алканы вступают в реакции полимеризации.	
		Б. Этилен обесцвечивает раствор перманганата калия	ОК 04,
		1) верно только А 2) верно только Б 3) верны оба суждения 4) оба суждения неверны	ОК 07
		э) верны оба суждения неверны	ЛР 16
24	1	Дегидроциклизация гептана приводит к образованию: 1) бензола; 3) нитробензола;	
		1) основна, 3) нитроосновна,	
		2) метилбензола; 4) диметилбензола	
		Найдите изомер метилциклобутана	ПК 2.5,
25	1		1111 2.5,
25	1		
25	1	1) 2) CH ₃ —C=CH—CH ₃	OK 04, OK 07

Оценочная шкала:

10% ошибок – «отлично» (22 -25 правильных ответов);

20% ошибок – «хорошо» (20- 21 правильных ответов);

30% ошибок – «удовлетворительно» (17-19 правильных ответов)

4.3. Задания в тестовой форме по теме «Алкены»

No॒	Ко		Форми
Π/Π	Л-		руемые
	во	Содержание задания в тестовой форме	ОК, ПК
	бал		
	ЛО		
	В		
		Выберите один правильный вариант	
1	1	Мономером для получения искусственного каучука по способу Лебедева служит:	ПК 2.5,
		1) бутен-2; 2) этан; 3) этилен; 4) бутадиен-1,3	ОК 04,
			OK 07
			ЛР 16
2	1	Этанол можно получить из этилена в результате реакции:	ПК 2.5,
		1) гидратации; 2) гидрирования;	
		3) галогенирования; 4) гидрогалогенирования	ОК 04,
			ОК 07
			ЛР 16
3	1	Галоген присоединяется преимущественно к наименее	ПК 2.5,
		гидрогенизированному атому углерода при реакции HBr с	
		1) (CH ₃) ₂ C=CH ₂ 2) CH ₃ - CH=CH-CH ₃	ОК 04,
		3) CH ₂ =CH-CH ₃ 4) CH ₂ =CH-COOH	ОК 07
			ЛР 16
4	1	При взаимодействии бутена-1 с водой образуется преимущественно	
4	1	1) бутен-1-ол-2 2) бутанол-2	ПК 2.5,
		3) бутанол-1 4) бутен-1-ол-1	ОК 04,
		S) Oylullosi 1	OR 04,
			ОК 07
			ЛР 16
5	1	Продуктом реакции бутена-1 с хлором является:	ПК 2.5,
		1) 2-хлорбутен-1; 2) 1,2-дихлорбутан;	
		3) 1,2-дихлорбутен-1; 4) 1,1-дихлорбутан	ОК 04,
			OK 07
			ЛР 16

	-	W 4	
	1	Наиболее характерными реакциями алкенов являются	ПК 2.5,
6		1) реакции замещения 2) реакции присоединения	010.04
		3) реакции разложения 4) реакции обмена	OK 04,
			OK 07
			ЛР 16
7	1	Voveg negranag weet unerven unen ze Menyenyayana	
'	1	Какая реакция идет против правила Марковникова:	ПК 2.5,
		1) CH_3 - CH = CH_2 + HBr \rightarrow 2) CH_3 - CH = CH_2 + H_2O \rightarrow 3) CF_3 - CH = CH_2 + HCl \rightarrow 4) CH_3 - CH_2 - CH = CH_2 + CH_2 \rightarrow 4) CH_3 - CH_2	OK 04,
		4) C13-C112-C112+11C1 / 4) C13-C112-C112-C112+C12 /	OK 04,
			OK 07
			ЛР 16
8	1	С каким из перечисленных веществ не взаимодействует этилен:	ПК 2.5,
U	_	1) H ₂ O; 2) H ₂ ; 3) Cl ₂ ; 4) CH ₄	1110 2.3,
		1) 1120, 2) 112, 3) 612, 4) 6114	OK 04,
			OK 07
			ЛР 16
9	1	Для алкенов характерны реакции:	ПК 2.5,
		1) замещения; 3) присоединения;	1111 210,
			ОК 04,
		2) разложения; 4) обмена	
			OK 07
			ЛР 16
10	1	Этилен не может быть получен в реакции	ПК 2.5,
		1) дегидрирования этана	
		2) дихлорэтана со спиртовым раствором щелочи	OK 04,
		3) дегидратации этанола	OIC 07
		4) гидрирования ацетальдегида	ОК 07 ЛР 16
11	1		
11	1	При взаимодействии пропена с хлороводородом образуется:	ПК 2.5,
		1) 1-хлорпропан; 3) 1,3-дихлорпропан;	OK 04
		2) 2-хлорпропан;4) 2- хлорпропен	ОК 04,
		2) 2-Astophipolian, 4) 2- Astophipolich	OK 07
			ЛР 16
12	1	Верны ли следующие суждения о свойствах углеводородов?	ПК 2.5,
	_	А. Алкены вступают в реакции полимеризации.	111 2.3,
		Б. Этилен не обесцвечивает раствор перманганата калия	ОК 04,
		1) верно только А; 3) верны оба суждения;	,
		2) верно только Б; 4) оба суждения неверны	OK 07
		, 1 , , , , , , , , , , , , , , , , , ,	ЛР 16
13	1	С помощью бромной воды можно отличить	ПК 2.5,
		1) этен от этана; 3) этен от бутадиена;	
		2) этан от пропана; 4) пропин от пропена	ОК 04,
			070.07
			OK 07
			ЛР 16
14	1	С хлороводородом реагирует:	ПК 2.5,
		1) бензол; 3) пропан;	074.04
		2) пропен 4) толуол	OK 04,
			OK 07
	<u> </u>		OR U/

			ЛР 16
15	1	Бромную воду обесцвечивает:	
	-	1) бензол; 3) пропен;	
		2) пропан; 4) толуол	
16	1	При взаимодействии пропена с водой образуется вещество, формула	ПК 2.5,
		которого:	
		1) CH ₂ OH-CH ₂ -CH ₃ ; 3) CH ₂ =CH-CH ₂ OH;	ОК 04,
		A) CH CHOH CH	ОК 07
		2) CH ₃ -CHOH-CH ₃ ; 4) CH ₂ =CH-CHOH-CH ₃	ЛР 16
17	1	Тин рибри имаамии отомор урнорода в модому до бутома 1	
17	1	Тип гибридизации атомов углерода в молекуле бутена-1 CH ₂ =CH—CH ₂ —CH ₃ слева направо:	ПК 2.5,
		1) sp^2 , sp^2 , sp^2 , sp^2 2) sp^2 , sp , sp^3	ОК 04,
		1) sp ² , sp ² , sp ² , sp ² 3) sp ² , sp ² , sp ³ , sp ³ 4) sp ³ , sp ² , sp ³ 4) sp ³ , sp ² , sp ³	
		7	OK 07
			ЛР 16
18	8	Вставьте в текст соответствующие слова и символы из	ПК 2.5,
		скобок:	
		В отличие от алканов алкены содержат в молекуле одну	ОК 04,
		(одинарную, двойную, тройную) связь. Простейшим представителем	ОК 07
		гомологического ряда алкенов является (этан, этин, этен),	HD 16
		который имеет формулу (C_2H_2 , C_2H_6 , C_2H_4 , C_2H_5). Состав каждого	711 10
		последующего гомолога отличается от предыдущего на группу (CH , CH_2 , CH_3) и подчиняется общей формуле (C_nH_{2n-2} , C_nH_{2n+2} , C_nH_{2n}). Атомы	
		углерода, связанные кратной связью, находятся в (первом, втором,	
		третьем) валентном состоянии и образуют друг с другом (одну, две) сигма-	
		связь и (одну, две) пи-связь. Длина углерод-углеродной связи в этене	
		(больше, меньше), чем в алканах, и составляет (0,120 нм, 0,132 нм, 0,140	
		нм, 0,154 нм).	
19	1	Плотность паров алкена по воздуху равна 2,41. Молекулярная формула этого	ПК 2.5,
		углеводорода:	ĺ
		1) C ₃ H ₆ ; 3) C ₅ H ₁₀ ;	ОК 04,
		2) C_4H_8 ; 4) C_6H_{12}	OV 07
			ОК 07 ЛР 16
20	1	Cyco H. Mo non-H. H. Dawaette	
20	1	Сколько различных веществ представлено формулами? CH ₂ =CH—CH—CH ₃ CH ₃ —CH ₂ —CH—CH=CH ₂	ПК 2.5,
			ОК 04,
		CH_2 — CH_3 CH_3	OR 04,
		CH ₂ =CH—CH—CH ₂ —CH ₃ CH ₃ —CH=C—CH ₂ —CH ₃	ОК 07
		2 2 - 3322	ЛР 16
		CH ₃ CH ₃	
		1) Одно 2) два 3) три 4) четыре	
		Соотнесите	

21	1	Соотнесите тип углеводорода и общую формулу:	ПК 2.5,
		<i>тип углеводорода:</i> А) алканы, Б) алкены,	OK 04,
		В) алкины, Г) алкадиены,	0104,
		Д) циклоалканы, Е) арены;	OK 07
		общая формула:	ЛР 16
		1) C_nH_{2n+2} , 2) C_nH_{2n} , 3) C_nH_{2n-2} , 4) C_nH_{2n-6}	
22	1	Соотнесите тип углеводорода и общую формулу:	ПК 2.5,
		<i>тип углеводорода:</i> 1) алканы, 2) алкены	ОК 04,
		формула:	OK 07
		a) C_5H_{12} , 6) $C_{11}H_{24}$, B) C_7H_{14} ,	ОК 07 ЛР 16
		Γ) C_2H_6 , Π) C_8H_{16} , Π 0 C_4H_8	
23	1	Соотнесите название алкена и формулу:	ПК 2.5,
		название алкена:	OIC 04
		1) 3,4-диметилпентен-1	OK 04,
		2) 2,4-диметилпентен-23) 3-этилпентен-2	OK 07
		4) транс-пептен-2	ЛР 16
		формула:	
		a) CH ₃ H 6) CH ₂ =CH—CH—CH—CH ₃	
		C=C	
		H CH_2 — CH_3 CH_3 CH_3	
		в) CH ₃ —C=CH—CH—CH ₃ г) CH ₃ —CH ₂ —C=CH—CH ₃	
		CH ₃ CH ₃ CH ₂ —CH ₃	
24	1	Соотнесите название алкена и формулу:	ПК 2.5,
		формула алкена:	
		1) CH ₃ —CH ₂ —C—CH ₂ —CH ₃ 2) CH ₃ CH ₃ C=C	OK 04,
		CH ₂ H CH ₃	ОК 07 ЛР 16
		3) CH ₃ —CH ₂ H 4)CH ₂ =C-CH ₂ -CH-CH ₃	
		C=C H CH ₂ —CH ₃ CH ₃ CH ₂ -CH ₃	
		название:	
		а) 2-метилбутен-2 б) 2,4-диметилгексен-1	
		в) транс-гексен-3 г) 2-этилбутен-1	
		77	
25	1	По правилу Марковникова не определяют продукт реакции:	ПК 2.5,
25	1	1) CH ₃ -CH=CH-CH ₃ + HBr 3) CH ₂ =CH-CH ₂ -CH ₃ + HCl	ПК 2.5, ОК 04,
25	1		

Оценочная шкала:

10% ошибок – «отлично» (22 -25 правильных ответов); 20% ошибок – «хорошо» (20- 21 правильных ответов);

30% ошибок – «удовлетворительно» (17-19 правильных ответов)

4.4. Задания в тестовой форме по теме «АЛКИНЫ»

№	Кол	Содержание задания в тестовой форме	Форми-
п/п	-во бал лов		руемые ОК, ПК, ЛР
		Выберите один правильный вариант	
1	1	При взаимодействии пропина и воды образуется	ПК 2.5,
		1) альдегид 3) спирт	ОК 04,
		2) кетон 4) карбоновая кислота	ОК 07 ЛР 16
2	1	К алкинам относится:	ПК 2.5,
		1) C ₃ H ₈ 3) C ₆ H ₈	ОК 04,
3	1	Тип гибридизации атомов углерода в этине, этане, этене соответственно:	ПК205, ЛР 16 ОК 04,
		1) sp, sp ² , sp ³ 3) sp ² , sp, sp ³	OK 04,
		2) sp^3 , sp^2 , sp 4) sp , sp^3 , sp^2	ОК 07 ЛР 16
4	1	Ацетилен не может быть получен в реакции	ПК 2.5,
		1) пиролиза метана 2) карбида кальция с водой	ОК 04,
		3) дегидратации ацетальдегида 4) дегидрирования этилена	ОК 07 ЛР 16
5	1	При взаимодействии карбида кальция с соляной кислотой наряду с	ПК 2.5,
		ацетиленом образуется 1) гидроксид кальция 3) хлорид кальция	OK 04,
		2) оксид кальция 4) хлорная известь	ОК 07 ЛР 16
6	1	Ацетилен можно получить добавлением воды к	ПК 2.5,
		1) карбиду кремния (IV) 2) карбиду алюминия Al ₄ C ₃	OK 04,
		3) карбиду кальция СаС2 4) карбонату бария	ОК 07 ЛР 16

7				
2) дегидратации этанола; 4) дихлорэтана со епиртовым раствором щёлочи ОК 07 ЛР 16 8 1 З-метилиентен-I отличить от 3-метилиентина-I можно действием 1 (К 2.5, 1) бромной воды 3) фенолфталениа 4) раствора перманганата калия ОК 07 ЛР 16 9 1 С помощью аммиачного раствора оксида серебра можно отличить 1) бутин-2 от бутена-1 3) бутин-1 от бутина-2 4) бутин-1 от пентина-1 ОК 04, ОК 07 ЛР 16 10 1 При бромировании пропина избытком брома образуется: 1) 1,2 – дибромпропан 2) 1,2 – дибромпропан 4) 1,2,3 - трибромпропан 2) 1,2 – дибромпропан 3) 1,1,2,2 – тетрабромпропан 2) 1,2 – дибромпропан 4) 1,2,3 - трибромпропан ОК 07 ЛР 16 11 При гидрировании пропина избытком водорода образуется: 1 (К 2.5, 1) пропен 3) пропадиен ОК 04, 2) пропап 4) бутап ОК 07 ЛР 16 12 1 При гидратации ацетилена получают промежуточное вещество А; которое окисляют в уксусную кислоту. Определите вещество А: ОК 04, ОК 07 ЛР 16 13 1 Врезультате взаимодействия анетилена с водой в присутствии солей двухвалентной ртуги образуется: 1) СНзСОН 2) С2-ИзОН 3) С2-Из 4) СНзСООН ОК 07 ЛР 16 14 1 При взаимодействии пропина и воды образуется 1 (К 2.5, 1) альдегид 2) кетон 3) спирт 4) карбоновая кислота ОК 04, ОК 07 ЛР 16 15 1 Число я-связей в молекуле пропина равно ПК 2.5, 1) 1 2) 2 3) 3 4) 4	7	1	Ацетилен можно получить в реакции	ПК 2.5,
При бромировании пропина избытком водорода образуется: ПК 2.5, 1) пропен 3) пропадиен 2) пропан 4) бутан ОК 04, 2) пропан 4) бутан ОК 04, 2) пропан 4) бутан При гидрариовании интелнена получают иромежуточное вещество A, которое оксилятия вукуссную кислоту. Определите вещество A; ПК 2.5, 1) СН ₃ СНОН 2) СН ₃ СНОН 3) СН ₃ СОСН 4) СК 07, ПР 16 13 1 В результате взаимодействия ацетилена с водой в присутствии солей двухвалентной ртути образуется: ПК 2.5, 1) СН ₃ СНОН 2) СН ₃ СНО 3) СН ₃ СОСН 4) СК 04, 06 07, ПР 16 15 1 При взаимодействия пропина избытком водорода образуется: ПК 2.5, 06 04, 06 07, ПР 16 16 17 11 При гидраровании пропина избытком водорода образуется: ПК 2.5, 1) пропен 3) пропадиен ОК 04, 2) пропан 4) бутан ОК 07, ПР 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18				ОК 04,
1 1 1 При гидрировании пропина избытком брома образуется: 1 пропен 3 пропадиен 2 пропан 4 бутан 2 пропан 4 бутан 1 При гидратации ацстилена получают промежуточное вещество А, которое окисляют в уксусную кислоту. Определите вещество А; пр 10 СН ₃ СОСН ₃ 1 СН ₃ СОСН ₃ 2 СК об				ОК 07
1) бромной воды 2) аммиачного раствора оксида серебра(1) 3) фенолфталенна 4) раствора пермантаната калия ОК 04, ОК 07 ЛР 16 1				ЛР 16
3) фенолфталеина 4) раствора перманганата калия OK 07	8	1	3-метилпентен-1 отличить от 3-метилпентина-1 можно действием	ПК 2.5,
7. 7. 7. 7. 7. 7. 7. 7.				ОК 04,
1 Спомощью аммиачного раствора оксида серебра можно отличить ПК 2.5, 1) бутин-2 от бутена-1 2) бутин-2 от бутена-2 3) бутин-1 от бутина-2 4) бутин-1 от пентина-1 ОК 04, 7 ЛР 16 10				
1) бутин-2 от бутена-1 2) бутин-2 от бутена-2 ОК 04, ОК 07 ЛР 16 10				
3) бутин-1 от бутина-2 4) бутин-1 от пентина-1 ОК 07 ЛР 16 10 1 При бромировании пропина избытком брома образуется: ПК 2.5, 1) 1,2 – дибромпропан 3) 1,1,2,2 – тетрабромпропан ОК 04, 2) 1,2 – дибромпропан 4) 1,2,3 - трибромпропан ОК 07 ЛР 16 11 1 При гидрировании пропина избытком водорода образуется: ПК 2.5, 1) пропен 3) пропадиен ОК 04, 2) пропан 4) бутан ОК 07 ЛР 16 12 1 При гидратации ацетилена получают промежуточное вещество А; которое окисляют в уксусную кислоту. Определите вещество А: 1) СН2СНОН 2) СН3СНО 3) СН3-О-СН3 4) СН3СОСН3 ОК 07 ЛР 16 13 1 В результате взаимодействия ацетилена с водой в присутствии солей двухвалентной ртути образуется: 1) СН3СОН 2) С2Н3ОН 3) С2Н4 4) СН3СООН ОК 07 ЛР 16 14 1 При взаимодействии пропина и воды образуется 11 Альдегид 2) кстои 3) спирт 4) карбоновая кислота ОК 04, ОК 07 ЛР 16 15 1 Число π-связей в молекуле пропина равно ПК 2.5, 1) 1 2) 2 3) 3 4) 4	9	1	С помощью аммиачного раствора оксида серебра можно отличить	ПК 2.5,
При бромировании пропина избытком брома образуется: ПК 2.5, 1) 1,2 – дибромпропан 3) 1,1,2,2 – тетрабромпропан ОК 04, 2) 1,2 – дибромпропан 4) 1,2,3 - трибромпропан ОК 07				ОК 04,
10 При бромировании пропина избытком брома образуется: ПК 2.5, 1) 1,2 – дибромпропан 3) 1,1,2,2 – тетрабромпропан ОК 04, 2) 1,2 – дибромпропан 4) 1,2,3 - трибромпропан ОК 07 ЛР 16 11 При гидрировании пропина избытком водорода образуется: ПК 2.5, 1) пропен 3) пропадиен ОК 04, 2) пропан 4) бутан ОК 07 ЛР 16 12 При гидратации апетилена получают промежуточное вещество А, которое окисляют в уксусную кислоту. Определите вещество А:				OK 07
1) 1,2 – дибромпропан 3) 1,1,2,2 – тетрабромпропан ОК 04, 2) 1,2 – дибромпропан 4) 1,2,3 - трибромпропан ОК 07 ЛР 16 11 1 При гидрировании пропина избытком водорода образуется: ПК 2.5, 1) пропен 3) пропадиен ОК 07 ЛР 16 12 1 При гидратации ацетилена получают промежуточное вещество А, которое окисляют в уксусную кислоту. Определите вещество А: ОК 04, 1) СН2СНОН 2) СН3СНО 3) СН3-О-СН3 4) СН3СОСН3 13 1 В результате взаимодействия ацетилена с водой в присутствии солей двухвалентной ртути образуется: ОК 04, ОК 07 ЛР 16 13 1 При взаимодействии пропина и воды образуется 1) СН3СОН 2) С2Н5ОН 3) С2Н4 4) СН3СООН 14 1 При взаимодействии пропина и воды образуется 1) альдегид 2) кетон 3) спирт 4) карбоновая кислота ОК 04, ОК 07 ЛР 16 15 1 Число π-связей в молекуле пропина равно ПК 2.5, ОК 04,				ЛР 16
2) 1,2 – дибромпропан 4) 1,2,3 - трибромпропан ОК 07 ЛР 16 11 При гидрировании пропина избытком водорода образуется: ПК 2.5, 1) пропен 3) пропадиен ОК 04, 2) пропан 4) бутан ОК 07 ЛР 16 12 При гидратации ацетилена получают промежуточное вещество А, которое окисляют в уксусную кислоту. Определите вещество А: 1) CH2CHOH 2) CH3CHO 3) CH3-O-CH3 4) CH3COCH3 ОК 04, ОК 07 ЛР 16 13 1 В результате взаимодействия ацетилена с водой в присутствии солей Двухвалентной ртути образуется: 1) CH3COH 2) C2H5OH 3) C2H4 4) CH3COOH ОК 07 ЛР 16 14 1 При взаимодействии пропина и воды образуется ПК 2.5, 1) альдегид 2) кетон 3) спирт 4) карбоновая кислота ОК 04, ОК 07 ЛР 16 15 1 Число π-связей в молекуле пропина равно ПК 2.5, 1) 1 2) 2 3) 3 4) 4	10	1	При бромировании пропина избытком брома образуется:	ПК 2.5,
ЛВ 16 11 1 При гидрировании пропина избытком водорода образуется: ПК 2.5, 1) 1) пропен 3) пропадиен ОК 04, 2) пропан 4) бутан ОК 07 ЛР 16 12 1 При гидратации ацетилена получают промежуточное вещество A; которое окисляют в уксусную кислоту. Определите вещество A: ОК 04, ПК 2.5, ОК 04 1) СН₂СНОН 2) СН₃СНО 3) СН₃-О-СН₃ 4) СН₃СОСН₃ 1) СН₂СНОН 2) СН₃СОН 3) СН₃-О-СН₃ 4) СН₃СОСН₃ 1) СН₃СОН 2) С₂Н₃ОН 3) С₂Н₄ 4) СН₃СООН 10 СН₃СОН 2) С₂Н₃ОН 3) С₂Н₄ 4) СН₃СООН 10 При взаимодействии пропина и воды образуется ПК 2.5, 1) При взаимодействин пропина и воды образуется ПК 2.5, 1) При взаимодействин пропина и воды образуется ПК 2.5, 1) При взаимодействин пропина и воды образуется ПК 2.5, 1) При взаимодействин пропина и воды образуется ПК 2.5, <th></th> <th></th> <th> 1) 1,2 – дибромпропан 3) 1,1,2,2 – тетрабромпропан </th> <th>ОК 04,</th>			 1) 1,2 – дибромпропан 3) 1,1,2,2 – тетрабромпропан 	ОК 04,
11 При гидрировании пропина избытком водорода образуется: ПК 2.5, 1) пропен 3) пропадиен ОК 04, 2) пропан 4) бутан ОК 07 ЛР 16 12 При гидратации ацетилена получают промежуточное вещество А, которое окисляют в уксусную кислоту. Определите вещество А: ПК 2.5, 1) СН2СНОН 2) СН3СНО 3) СН3-О-СН3 4) СН3СОСН3 13 При разрыть тате взаимодействия ацетилена с водой в присутствии солей двухвалентной ртути образуется: ПК 2.5, 1) СН3СОН 2) С2Н5ОН 3) С2Н4 4) СН3СООН 14 При взаимодействии пропина и воды образуется ПК 2.5, 1) альдегид 2) кетон 3) спирт 4) карбоновая кислота 0К 04, ОК 07, ЛР 16 ПК 2.5, 15 При сло π-связей в молекуле пропина равно ПК 2.5, 1) 1 2) 2 3) 3 4) 4			 1,2 – дибромпропан 1,2,3 - трибромпропан 	ОК 07
1) пропен 3) пропадиен ОК 04, 2) пропан 4) бутан ОК 07, ЛР 16 12 1 При гидратации ацетилена получают промежуточное вещество А, которое окисляют в уксусную кислоту. Определите вещество А: ОК 04, 1) СН₂СНОН 2) СН₃СНО 3) СН₃-О-СН₃ 4) СН₃СОСН₃ ОК 07, ЛР 16 13 1 В результате взаимодействия ацетилена с водой в присутствии солей двухвалентной ртути образуется: ОК 04, ОК 07, ЛР 16 14 1 При взаимодействии пропина и воды образуется ПК 2.5, 1) альдегид 2) кетон 3) спирт 4) карбоновая кислота ОК 04, ОК 07, ЛР 16 15 1 Число π-связей в молекуле пропина равно ПК 2.5, 1) 1 2) 2 3) 3 4) 4				ЛР 16
2) пропан 4) бутан ОК 07 ЛР 16 12 1 При гидратации ацетилена получают промежуточное вещество А, которое окисляют в уксусную кислоту. Определите вещество А: 1) CH ₂ CHOH 2) CH ₃ CHO 3) CH ₃ -O-CH ₃ 4) CH ₃ COCH ₃ ОК 04, ОК 07 ЛР 16 13 1 В результате взаимодействия ацетилена с водой в присутствии солей Двухвалентной ртути образуется: 1) CH ₃ COH 2) C ₂ H ₅ OH 3) C ₂ H ₄ 4) CH ₃ COOH ОК 07 ЛР 16 14 1 При взаимодействии пропина и воды образуется ПК 2.5, 1) альдегид 2) кетон 3) спирт 4) карбоновая кислота ОК 04, ОК 07 ЛР 16 15 1 Число π-связей в молекуле пропина равно ПК 2.5, 1) 1 2) 2 3) 3 4) 4	11	1	При гидрировании пропина избытком водорода образуется:	ПК 2.5,
ЛР 16 12 1 При гидратации ацетилена получают промежуточное вещество A, которое окисляют в уксусную кислоту. Определите вещество A: 1) CH₂CHOH 2) CH₃CHO 3) CH₃-O-CH₃ 4) CH₃COCH₃ ОК 07 ЛР 16 13 1 В результате взаимодействия ацетилена с водой в присутствии солей двухвалентной ртути образуется: 1) CH₃COH 2) C₂H₅OH 3) C₂H₄ 4) CH₃COOH ОК 04, ОК 07 ЛР 16 14 1 При взаимодействии пропина и воды образуется ПК 2.5, ОК 04, ОК 07 ЛР 16 15 1 Число π-связей в молекуле пропина равно ПК 2.5, ОК 04, ОК 04, ОК 04, ОК 04, ОК 04, ОК 04, ОК 0			1) пропен 3) пропадиен	ОК 04,
12 1 При гидратации ацетилена получают промежуточное вещество A, которое окисляют в уксусную кислоту. Определите вещество A: 1) CH2CHOH 2) CH3CHO 3) CH3-O-CH3 4) CH3COCH3 OK 04, OK 07 ЛР 16 13 1 В результате взаимодействия ацетилена с водой в присутствии солей двухвалентной ртути образуется:			2) пропан 4) бутан	
которое окисляют в уксусную кислоту. Определите вещество A: 1) CH2CHOH 2) CH3CHO 3) CH3-O-CH3 4) CH3COCH3 OK 04, OK 07 ЛР 16 ПК 2.5, ОК 04, ОК 07 ЛР 16 13 1 В результате взаимодействия ацетилена с водой в присутствии солей двухвалентной ртути образуется: ПК 2.5, ОК 04, ОК 07 ЛР 16 14 1 При взаимодействии пропина и воды образуется ПК 2.5, ОК 04, ОК 07 ЛР 16 14 1 При взаимодействии пропина и воды образуется ПК 2.5, ОК 04, ОК 07 ЛР 16 15 1 Число π-связей в молекуле пропина равно ПК 2.5, ОК 04, О				
1) CH ₂ CHOH 2) CH ₃ CHO 3) CH ₃ -O-CH ₃ 4) CH ₃ COCH ₃ OK 04, OK 07 ЛР 16 13 1 В результате взаимодействия ацетилена с водой в присутствии солей двухвалентной ртути образуется: 1) CH ₃ COH 2) C ₂ H ₅ OH 3) C ₂ H ₄ 4) CH ₃ COOH OK 07 ЛР 16 14 1 При взаимодействии пропина и воды образуется ПК 2.5, 1) альдегид 2) кетон 3) спирт 4) карбоновая кислота ОК 04, ОК 07 ЛР 16 15 1 Число π-связей в молекуле пропина равно ПК 2.5, 1) 1 2) 2 3) 3 4) 4	12	1		ПК 2.5,
1) CH ₂ CHOH 2) CH ₃ CHO 3) CH ₃ -O-CH ₃ 4) CH ₃ COCH ₃ OK 07 ЛР 16 13 1 В результате взаимодействия ацетилена с водой в присутствии солей двухвалентной ртути образуется: 1) CH ₃ COH 2) C ₂ H ₅ OH 3) C ₂ H ₄ 4) CH ₃ COOH OK 07 ЛР 16 14 1 При взаимодействии пропина и воды образуется ПК 2.5, 1) альдегид 2) кетон 3) спирт 4) карбоновая кислота ОК 04, ОК 07 ЛР 16 15 1 Число π -связей в молекуле пропина равно ПК 2.5, 1) 1 2) 2 3) 3 4) 4			которое окисляют в уксусную кислоту. Определите вещество А:	OK 04
ПР 16 13 1 В результате взаимодействия ацетилена с водой в присутствии солей двухвалентной ртути образуется: 1			1) CH ₂ CHOH 2) CH ₃ CHO 3) CH ₃ -O-CH ₃ 4) CH ₃ COCH ₃	OK 04,
13 1 В результате взаимодействия ацетилена с водой в присутствии солей двухвалентной ртути образуется: ПК 2.5, ОК 04, 1) CH ₃ COH 2) C ₂ H ₅ OH 3) C ₂ H ₄ 4) CH ₃ COOH 14 1 При взаимодействии пропина и воды образуется ПК 2.5, ПК 2.5, ОК 07, ПР 16 1) альдегид 2) кетон 3) спирт 4) карбоновая кислота ОК 04, ОК 07, ЛР 16 15 1 Число π-связей в молекуле пропина равно ПК 2.5, ОК 04, 1) 1 2) 2 3) 3 4) 4 ОК 04,				
двухвалентной ртути образуется: 1) CH ₃ COH 2) C ₂ H ₅ OH 3) C ₂ H ₄ 4) CH ₃ COOH ОК 04, 14 1 При взаимодействии пропина и воды образуется ПК 2.5, 1) альдегид 2) кетон 3) спирт 4) карбоновая кислота ОК 04, 0K 07 ЛР 16 15 1 Число π-связей в молекуле пропина равно ПК 2.5, 1) 1 2) 2 3) 3 4) 4 ОК 04,				
1) CH ₃ COH 2) C ₂ H ₅ OH 3) C ₂ H ₄ 4) CH ₃ COOH OK 04, OK 07 ЛР 16 14 1 При взаимодействии пропина и воды образуется ПК 2.5, ОК 04, ОК 07 ЛР 16 15 1 Число π-связей в молекуле пропина равно ПК 2.5, ОК 04, О	13	1		ПК 2.5,
ОК 07 ЛР 16 14 1 При взаимодействии пропина и воды образуется ПК 2.5, 1) альдегид 2) кетон 3) спирт 4) карбоновая кислота ОК 04, 0K 07 ЛР 16 ОК 07 ЛР 16 15 1 Число π-связей в молекуле пропина равно ПК 2.5, 1) 1 2) 2 3) 3 4) 4 ОК 04,				OK 04,
14 При взаимодействии пропина и воды образуется ПК 2.5, 1) альдегид 2) кетон 3) спирт 4) карбоновая кислота ОК 04, ОК 07 ЛР 16 15 1 Число π-связей в молекуле пропина равно ПК 2.5, 1) 1 2) 2 3) 3 4) 4 ОК 04,			2) 62113 611	ОК 07
1) альдегид 2) кетон 3) спирт 4) карбоновая кислота ОК 04, ОК 07 ЛР 16 15 1 Число π-связей в молекуле пропина равно ПК 2.5, 1) 1 2) 2 3) 3 4) 4 ОК 04,				ЛР 16
15 1 Число π-связей в молекуле пропина равно ПК 2.5, 1) 1 2) 2 3) 3 4) 4 ОК 04,	14	1	При взаимодействии пропина и воды образуется	ПК 2.5,
15 1 Число π-связей в молекуле пропина равно ПК 2.5, 1) 1 2) 2 3) 3 4) 4 ОК 04,			1) альдегид 2) кетон 3) спирт 4) карбоновая кислота	OK 04,
15 1 Число π-связей в молекуле пропина равно ПК 2.5, 1) 1 2) 2 3) 3 4) 4 ОК 04,				ОК 07
1) 1 2) 2 3) 3 4) 4 OK 04,				
OK 04,	15	1	Число π-связей в молекуле пропина равно	ПК 2.5,
OK 07			1) 1 2) 2 3) 3 4) 4	ОК 04,
				ОК 07

1	Название углеводорода с формулой	ПК 2.5,
	CH3—CH—C≡C—CH—CH3	OK 04,
	C_2H_5 CH_3	
		ОК 07 ЛР 16
1		ПК 2.5,
		ОК 04,
	C_2H_5	ОК 07
	2) CH ₃ —C≡C—CH—CH ₃	ЛР 16
	CH ₃	
	4) CH==C—CH ₂ —CH ₂ —CH ₃	
	СНз	
1	Найдите пару гомологов:	ПК 2.5,
		OK 04,
		ОК 07 ЛР 16
	4) $CH = CH_2 - CH_3 \text{ if } CH_3 - CH_3 \text{ if } CH_2 - CH_3 \text{ if } CH_3 - CH_3 \text{ if } CH_3 - CH_3 i$	
1	Тройная связь состоит из:	ПК 2.5,
	/ · · · · · · · · · · · · · · · · · · ·	ОК 04,
	3) двух - и однои -связи 4) трех -связеи	OK 07
		ЛР 16
1	Обесцвечивает бромную воду:	ПК 2.5,
		ОК 04,
	2) циклобутан 4) пропан	ОК 07
		ЛР 16
1	Для алкинов и алкенов характерны реакции:	ПК 2.5,
	1) замещения 3) разложения	OK 04,
	2) обмена 4) присоединения	
		ОК 07 ЛР 16
	1	1) 2-этил-5-метилгексин-3 3) 2,5-диметилгентин-3 4) 3,6-диметилгентин-4 1 Укажите формулу изомера 2,5-диметилгексина-3: 1) CH=C—CH—CH2—CH3 C2H5 2) CH3—C=C—CH—CH3 CH3 3) CH3—CH2—C=C—CH2—CH3 CH3 4) CH=C—CH2—CH3—CH3 CH3 1 Найдите пару гомологов: 1) CH=C—CH2—CH3 и CH3—C=C—CH3 2) CH3—CH=CH2—CH3 и CH=C—CH2—CH3 CH3 3) CH=C—CH2—CH3 и CH=C—CH2—CH3 CH3 3) CH=C—CH2—CH3 и CH=CH—CH2—CH3 T00йная связь состоит из: 1) двух - и одной -связи 2) трех -связей 3) двух - и одной -связи 4) трех -связей 1 Обесцвечивает бромную воду: 1) этап 3) ацетилен 2) циклобутан 4) пропан

22	1	Ацетилен при определенных условиях взаимодействует с каждым веществом пары:	ПК 2.5,
		1) вода и кислород 3) бром и оксид кальция	ОК 04,
		2) водород углекислый газ 4) этан и хлор	ОК 07 ЛР 16
23	1	Этин от этана можно отличить с помощью:	ПК 2.5,
	_	1) раствора перманганата калия 3) гидроксида натрия	11K 2.3,
		1) раствора перматтапата калия 3) гидроконда патрия	OK 04,
		2) воды 4) серной кислоты	OR 04,
		2) Bogsi	OK 07
			ЛР 16
24	1	Раствор перманганата калия не обесцвечивает:	ПК 2.5,
		1) этилен 3) ацетилен	
			OK 04,
		2) бутан 4) пропен	
			OK 07
		_	ЛР 16
25	1	Число изомерных аренов, образующихся при тримеризации этина, равно:	ПК 2.5,
		1) одному 2) двум 3) трем 4) четырем	OK 04,
			01/, 07
			OK 07
			ЛР 16

Оценочная шкала:

10% ошибок – «отлично» (22 -25 правильных ответов);

20% ошибок – «хорошо» (20- 21 правильных ответов);

30% ошибок – «удовлетворительно» (17-19 правильных ответов)

4.5. Задания в тестовой форме по теме «Арены»

No	Кол		Форми-
п/п	-во бал лов	Содержание задания в тестовой форме σ	руемые ОК, ПК, ЛР
		Выберите один правильный вариант	
		π	
1	1	Шесть атомов углерода в бензольном кольце соединены:	ПК 2.5,
		1) одинарными - связями σ	ОК 04,
		 2) единой - связью 	OK 07
		3) чередующимися одинарными и двойными связями	ЛР 16
		4) - связями и единой замкнутой - связью	

2	1	В молекуле бензола в отличии от циклогексана:	ПК 2.5,
		1) замкнутая углеродная цепь	ОК 04,
			ОК 07
			ЛР 16
		2) атомы углерода sp^2 – гибридизованы	ПК 2.5,
		3) углерод- углеродные связи имеют разную длину	ОК 04,
		4) атомов водорода больше	OK 07
			ЛР 16
3	1	Не соответствует действительности утверждение, что в молекуле бензола	ПК 2.5,
		1) атомы углерода равноценны	ОК 04,
		2) атомы водорода равноценны	ОК 07 ЛР 16
			JIP 10
		3) чередуются одинарные и двойные связи	
		4) все углерод- углеродные связи равноценны	
4	1	Укажите, какие реагенты необходимы для осуществления следующих превращений:	ПК 2.5,
		Сн³ сооп	ОК 04,
			ОК 07 ЛР 16
		1) 1 – H ₂ SO ₄ (конц.); 2 – CH ₃ Cl, AlCl ₃ ; 3 – KOH, спирт	
		2) 1 – Pt, t°; 2 – CH ₃ Cl, AlCl ₃ ; 3 – KMnO ₄ (H ⁺)3) 1 – Pt, t°; 2 – CH ₂ =CH ₂ , AlCl ₃ ; 3 – KMnO ₄ (H ⁺)4)	
		$1 - Pt, t^{o};$ $2 - CH_2 = CH_2, AlCl_3; 3 - KMnO_4 (H^+)4)$ $1 - H_2, Pt;$ $2 - CH_3Cl, H_2SO_4; 3 - KMnO_4(H^+)$	
5	1	Для бензола характерно:	ПК 2.5,
		1) наличие в молекуле сопряженной - электронной системы 2) sp- гибридизация атомов углерода	ОК 04,
		3) обесцвечивание бромной воды в обычных условиях 4) хорошая растворимость в воде	ОК 07
		ту корошая растворимоств в воде	ЛР 16
6	1	Бензол не вступает в реакцию с	ПК 2.5,
		1) хлором при освещении	ОК 04,
		2) хлором в присутствии катализатора AlCl ₃ 3) хлорэтаном в присутствии катализатора AlCl ₃	ОК 07
		4) с нитрирующей смесью (смесью конц. азотной и серной кислот)	ЛР 16
		2) хлором в присутствии катализатора AlCl ₃ 3) хлорэтаном в присутствии катализатора AlCl ₃	

7	1	Реакция галогенирования ароматических углеводородов проводится в присутствии катализатора:	ПК 2.5,
		1) соли ртути 2) H ₂ SO ₄ конц. 3) CCl ₄ 4) FeBr ₃ или AlCl ₃	OK 04,
			ОК 07 ЛР 16
8	1	При бромировании толуола образуется:	ПК 2.5,
		1) орто-продукт 2) мета-продукт	ОК 04,
		3) пара-продукт 4) смесь орто- и пара-	ОК 07 ЛР 16
9	1	Реакция нитрования ароматических углеводородов проводится в присутствии:	ПК 2.5,
		1) соли ртути	ОК 04,
			ОК 07 ЛР 16

		3) CCl ₄ 4) FeBr ₃ или AlCl ₃	ПК 2.5,
		7) Tebis Him Meis	1110 2.3,
			ОК 04,
			ОК 07
			ЛР 16
10	1	Хлорирование бензола при УФ – облучении позволяет получить:	ПК 2.5,
		1) хлорбензол	ОК 04,
		2) хлорциклогексан	ОК 07
		3) трихлорциклогексан	ЛР 16
		4) гексахлорциклогексан	
11	1	Реакция алкилирования ароматических углеводородов	ПК 2.5,
		галогеналканами проводится в присутствии катализатора:	OIC 04
		1) соли ртути 3) AlCl ₃	ОК 04,
		2) конц. H ₂ SO ₄ 4) CCl ₄	ОК 07
		2) KOHII. 112SO4 4) CC14	ЛР 16
12	1	Бензол присоединяет в жестких условиях:	ПК 2.5,
		1) водород 2) азотную кислоту 3) серную кислоту 4) воду	ОК 04,
			OK 07
12			ЛР 16
13	1	При нитровании бензола в качестве катализатора используют:	ПК 2.5,
		1) AlCl ₃ 2) H ₂ SO ₄ 3) воду 4) Ni	ОК 04,
			ОК 07
			ЛР 16
14	1	При гидрировании бензола получится:	ПК 2.5,
		1) гексан 2) циклогексан 3) пентан 4) циклопентан	ОК 04,
			OK 07
			ЛР 16
15	1	Хлорировании бензола проводят в присутствии катализатора:	ПК 2.5,
		1) AlCl ₃ 2) H ₂ SO ₄ 3) H ₂ O 4) УФ-облучение	ОК 04,
			ОК 07
			ЛР 16
16	1	Бензол можно получить из:	ПК 2.5,
		1) гексана 2) пентана 3) 2-метилпентана 4) 2-метилгексана	ОК 04,
			ОК 07
			ЛР 16

17	1	Из гептана с помощью дегидроциклизации можно получить:	ПК 2.5,
		1) бензол 2) толуол 3) этилбензол 4) 1,3-диметилбензол	ОК 04,
			ОК 07
			ЛР 16
18	1	Гомологами являются:	ПК 2.5,
		1) бензол и толуол	ОК 04,
		2) бензол и гексан	ОК 07
		3) циклогексан и бензол	ЛР 16
		3) циклогексан и оснзол	
		4) этан и этен	ПК 2.5,
			ОК 04,
			ОК 07
			ЛР 16
19	1	В схеме превращений $C_2H_2 \rightarrow^{C (актив), t} \rightarrow \rightarrow X$ вещество X это:	ПК 2.5,
		1) хлорэтан 3) гексахлоран	ОК 04,
		2) хлорбензол 4) хлоргексан	ОК 07
			ЛР 16
20		Бензол не может быть получен в реакции	ПК 2.5,
		1)тримеризации ацетилена 2) дегидратации фенола	ОК 04,
		3) дегидрирования циклогексана 4) дегидроциклизации гексана	ОК 07
			ЛР 16
21	1	При радикальном монохлорировании этилбензола получается: 1) CHCl—CH ₃ 2) CH ₂ —CH ₂ Cl 3) Cl CH ₂ —CH ₃	ПК 2.5,
		Cl Cl	ОК 04,
		Cl Cl	ОК 07
		4) CH ₂ —CH ₃ Cl	ЛР 16
		Cl	
22	1	Название вещества с формулой CH ₃ O ₂ N NO ₂	ПК 2.5,
		0211 1102	ОК 04,
		NO_2	ОК 07
		1) 2,4,6-тринитротолуол	ЛР 16
		2) тротил	
		3) 1-метил-2,4,6-тринитробензол4) все перечисленные ответы верны	
		, 1 ·	

23	1	Гексен от бензола можно отличить:	ПК 2.5,
		1) с помощью воды 3) оксида серебра	
			ОК 04,
		2) кислорода 4) раствора перманганата калия	OI
			OK 07
			ЛР 16
24	1	Один моль бензола может присоединить хлор в количестве, моль:	ПК 2.5,
		1) 1 3) 3	
			ОК 04,
		2) 2 4) 4	
			OK 07
			ЛР 16
25	1	Сколько существует изомерных дихлорбензолов?	ПК 2.5,
		1) один 2) два 3) три 4) четыре	ОК 04,
			OV 07
			OK 07
			ЛР 16

Оценочная шкала:

10% ошибок – «отлично» (22 -25 правильных ответов);

20% ошибок – «хорошо» (20- 21 правильных ответов);

30% ошибок – «удовлетворительно» (17-19 правильных ответов)

4.6. Задания в тестовой форме по теме «Альдегиды»

		Форми-
-во бал лов	Содержание задания в тестовой форме	руемые ОК, ПК, ЛР
	Выберите один правильный вариант	
1	Межклассовым изомером для бутаналя является:	ПК 2.5,
	1) 2-метилпропаналь 2) этаналь 3) бутанон г) 4-метилбутаналь	ОК 04, ОК 07 ЛР 16
1	Изомером углеродного скелета для бутаналя является:	ПК 2.5,
	 2-метилпропаналь этаналь бутанон 2-метилбутаналь 	ОК 04, ОК 07 ЛР 16
	1	 Межклассовым изомером для бутаналя является: 1) 2-метилпропаналь 2) этаналь 3) бутанон г) 4-метилбутаналь Изомером углеродного скелета для бутаналя является: 1) 2-метилпропаналь 2) этаналь 3) бутанон

3	1	Гомологом для пропионового альдегида не является:	ПК 2.5,
		1) бутаналь 2) формальдегид 3) бутанол-1 4) 2-метилпропаналь	OK 04,
			OK 07
			ЛР 16
4	1	Состав С _п Н _{2п} О имеют	ПК 2.5,
		1) карбоновые кислоты и сложные эфиры	1110 2.5,
		2) сложные эфиры и простые эфиры	ОК 04,
		3) простые эфиры и альдегиды	311 0 .,
		4) альдегиды и кетоны	OK 07
		,,	ЛР 16
5	1	Молекула вещества 2-метилпропен-2-аль содержит	ПК 2.5,
		1) три атома углерода и одну двойную связь	
		2) четыре атома углерода и одну двойную связь	ОК 04,
		3) три атома углерода и две двойные связи	
		4) четыре атома углерода и две двойные связи	OK 07
L			ЛР 16
6	1	Выберите неверное утверждение:	ПК 2.5,
		1) альдегиды являются хорошими восстановителями	
		2) альдегиды характеризуются низкой реакционной способностью	ОК 04,
		3) альдегиды легко вступают в реакции замещения	0.74.0.
		4) альдегиды легко вступают в реакции конденсации и полимеризации.	OK 07
			ЛР 16
7		Уксусный альдегид реагирует с каждым из двух веществ	ПК 2.5,
		1) аммиачным раствором оксида серебра(I) и кислородом	
		2) гидроксидом меди (II) и оксидом кальция	OK 04,
		3) соляной кислотой и серебром	OK 07
		4) гидроксидом натрия и водородом	ЛР 16
8	1	D ware many war of many and a superior and a superi	
0	1	В ходе реакции «серебряного зеркала» этаналь окисляется по 1) связи С—Н 3) связи С=О	ПК 2.5,
		,	ОК 04,
		2) связи С—С 4) углеводородному радикалу	OK 04,
			OK 07
			ЛР 16
9	1	При взаимодействии ацетальдегида с гидроксидом меди (II)	ПК 2.5,
	_	образуется	111(2.5,
		1) этилацетат 3) этиловый спирт	ОК 04,
		2) уксусная кислота 4) этилат меди (II)	
		, , , , , , , , , , , , , , , , , , , ,	OK 07
			ЛР 16
10	1	В результате реакции альдегида с водородом образуется	ПК 2.5,
		1) спирт 2) простой эфир 3) сложный эфир 4) кислота	ОК 04,
			OK 07
			ЛР 16
11	1	Уксусный альдегид вступает во взаимодействии каждым из двух	
**	1	веществ	ПК 2.5,
		1) H ₂ y ₁ Cy(OH) ₂ 2) P ₂ y ₁ A ₂ 2) Cy(OH) ₂ y ₁ HCl 4) O ₂ y ₂ CO	ОК 04,
		1) H ₂ и Cu(OH) ₂ 2) Br ₂ и Ag 3) Cu(OH) ₂ и HCl 4) O ₂ и CO ₂	01/ 07
			OK 07

			ЛР 16
12	1	Муравьиный альдегид получают окислением:	ПК 2.5,
		1) этанола 3) пропанола -1	ОК 04,
		2) метанола 4) пропанола -2	ОК 07 ЛР 16
13	1	При окислении альдегидов образуются:	ПК 2.5,
		1) карбоновые кислоты 3) первичные спирты	ОК 04,
		2) кетоны 4) вторичные спирты	ОК 07 ЛР 16
14	1	При восстановлении альдегидов образуются:	ПК 2.5,
		1) карбоновые кислоты 3) первичные спирты	ОК 04,
		2) кетоны 4) вторичные спирты	ОК 07
			ЛР 16
15	1	Альдегид нельзя окислить с помощью:	ПК 2.5,
		1) KMnO ₄ 2) CuO 3) [Ag(NH ₃) ₂]OH 4) Cu(OH) ₂	ОК 04,
			ОК 07 ЛР 16
16	1	Многоатомные спирты и альдегиды можно распознать с помощью реагента. Формула которого:	ПК 2.5,
			ОК 04,
		1) $FeCl_3$ 2) Ag_2O 3) H_2 4) $Cu(OH)_2$	ОК 07
			ЛР 16
17	1	При взаимодействии альдегида и водорода образуется:	ПК 2.5,
		1) кетон 2) карбоновая кислота 3) спирт 4) алкен	OK 04,
			ОК 07
18	1	Varca vnapuonna pagruun naufa naa tanna ahna vnaat pagruun	ЛР 16
10	1	Какое уравнение реакции наиболее точно описывает реакцию «серебряного зеркала»?	ПК 2.5,
		1) RCHO + [O] → RCOOH	ОК 04,
			ОК 07
		2) RCHO + Ag ₂ O \rightarrow RCOOH + 2Ag 3) 5RCHO + 2KMnO ₄ + 3H ₂ SO ₄ \rightarrow 5RCOOH + K ₂ SO ₄ + + 2MnSO ₄ + 3H ₂ O	ЛР 16
		4) RCHO + $2[Ag(NH_3)_2]OH \rightarrow RCHOONH_4 + 2Ag + 3NH_3 + H_2O$	
			1

19	1	Качественной реакцией на формальдегид является его	ПК 2.5,
		взаимодействие с	
		1) водородом 3) хлороводородом	ОК 04,
		1) водородом 3) хлороводородом	ОК 07
		2) бромной водой 4) аммиачным раствором оксида серебра	ЛР 16
20	-		
20	1	Качественной реакцией на альдегиды является взаимодействие с:	ПК 2.5,
		1) FeCl ₃ 2) Cu(OH) ₂ (t) 3) Na 4) NaHCO ₃	ОК 04,
			ОК 07
			ЛР 16
21	1	Какое вещество образуется при окислении пропаналя?	ПК 2.5,
			Í
		1) пропанол 2) пропиловый эфир уксусной кислоты	OK 04,
		3) пропионовая кислота 4) метилэтиловый эфир	ОК 07
		э) пропионовая кислота — т) метилэтиловый эфир	ЛР 16
22		Уксусный альдегид может быть получен окислением	ПК 2.5,
		5 Reyelloin asibacing more i obito nosiy len ornesiennem	111 2.5,
		1) уксусной кислоты 2) уксусного ангидрид	ОК 04,
		3) ацетатного волокна 4) этанола	ОК 07
			ЛР 16
23	1	Получить альдегид из первичного спирта можно при помощи	ПК 2.5,
		окисления:	,
			ОК 04,
		1) KMnO ₄ 2) O ₂ 3) CuO 4) Cl ₂	ОК 07
			ОК 07 ЛР 16
24	1	В реакцию «серебряного зеркала» вступает:	
	1	Б реакцию «серсоряного эсркала» вступает.	ПК 2.5,
		1) этанол 2) уксусная кислота 3) этаналь 4) этилен	ОК 04,
			OK 07
			ЛР 16
25	1	Пропусканием паров пропанола-1 через раскаленную медную сетку можно получить:	ПК 2.5,
		1) пропаналь 2) пропанон 3) пропен 4) пропионовую кислоту	ОК 04,
			OK 07
			ЛР 16

Оценочная шкала:

10% ошибок – «отлично» (22 -25 правильных ответов);

20% ошибок – «хорошо» (20- 21 правильных ответов);

30% ошибок – «удовлетворительно» (17-19 правильных ответов)

4.7. Задания в тестовой форме по теме «Спирты»

No	Кол		Форми-
п/п	-во бал лов	Содержание задания в тестовой форме	руемыеОК, ПК
		Выберите один правильный вариант	
1	1	Parragene	HIC 2.5
1	1	Вещество пентанол-2 относится к: 1) первичным спиртам 2) вторичным спиртам	ПК 2.5,
		3) третичным спиртам 4) двухатомным спиртам	ОК 04,
			010.07
			ОК 07 ЛР 16
2	1	Предельным одноатомным спиртом не является:	ПК 2.5,
	-	1) метанол; 2) 3-этилпентанол-1;	THC 2.3,
		3)2-фенилбутанол-1; 4) этанол	ОК 04,
			ОК 07
			ЛР 16
3	1	Изомером положения функциональной группы для пентанола-2	ПК 2.5,
		является: 1) пентанол-1 2) 2-метилбутанол-2 3) бутанол-2 4) 3-метилпентанол-1	ОК 04,
			016.07
			ОК 07 ЛР 16
4	1	Сколько первичных, вторичных и третичных спиртов приведено	ПК 2.5,
-	_	ниже?	111(2.3,
		a) CH ₃ CH ₂ -OH б) C ₂ H ₅ -CH(CH ₃)-CH ₂ - OH в) (CH ₃) ₃ C-CH ₂ -OH	ОК 04,
		г) (CH ₃) ₃ C-OH д) CH ₃ -CH(OH)-C ₂ H ₅ e) CH ₃ -OH 1) первичных - 3, вторичных - 1, третичных - 1	OK 07
		2) первичных - 2, вторичных - 2, третичных - 2	ЛР 16
		3) первичных - 4, вторичных - 1, третичных - 1	
		4) первичных - 3, вторичных - 2, третичных - 1	
5	1	Молекулы спиртов полярны из-за полярности связи водорода с:	ПК 2.5,
		1) кислородом 2) азотом 3) фосфором 4) углеродом	ОК 04,
			OK 07
			ЛР 16
6	1	Этанол не взаимодействует с	ПК 2.5,
		1) NaOH 2) Na 3) HCl 4) O ₂	ОК 04,
			OK 04,
			OK 07
			ЛР 16
7	1	При дегидратации этанола можно получить:	ПК 2.5,
		1) этан 3) ацетилен	ОК 04,
		2) этилен 4) метан	
			33

			ЛР 16
8	1	Для получения этиленгликоля можно использовать щелочной гидролиз:	ПК 2.5,
		1) хлорэтана 3) 1,1 –дихлорэтана	ОК 04,
		2) 1,2 – дихлорэтана 4) хлорэтена	OK 07
			ЛР 16
9	1	Предельные одноатомные спирты не взаимодействуют с :	ПК 2.5,
		1) кислородом 3) галогеноводородными кислотами	
		2) wayayay (II)	ОК 04,
		2) щелочами 4) оксидом меди (II)	OK 07
			ЛР 16
10	1	При окислении первичного бутилового спирта получают:	ПК 2.5,
		1) пропаналь 2) масляный альдегид 3) этаналь 4) метаналь	ОК 04,
			OK 07
			ЛР 16
11	1	При окислении (дегидрировании) вторичного спирта получают	ПК 2.5,
		1) третичный спирт 2) альдегид 3) кетон 4) карбоновую кислоту	ОК 04,
			ОК 07
			ЛР 16
12	1	Из гидроксил-содержащих веществ при дегидрировании превращается в кетон:	ПК 2.5,
		1) метанол 2) этанол 3) пропанол-2 4) о-крезол	OK 04,
			OK 07
13	1	При окислении бутанола-1 образуется:	ЛР 16 ПК 2.5,
13	1	при окислении бутанола-т боразуется.	11K 2.3,
		1) кетон 2) альдегид 3) кислота 4) алкен	ОК 04,
			OK 07
4.4			ЛР 16
14	1	При окислении метанола образуется 1) метан 2) уксусная кислота 3) метаналь 4) хлорметан	ПК 2.5,
		1) Metall 2) yreyelian ruellota 3) Metallalib 4) Allopmetal	ОК 04,
			ОК 07
			ЛР 16
15	1	При нагревании этанола с кислородом на медном катализаторе образуется	ПК 2.5,
		1) этен 2) ацетальдегид 3) диэтиловый эфир 4) этандиол	ОК 04,
			ОК 07
			ЛР 16

16	1	Внутримолекулярная дегидратация спиртов приводит к образованию	ПК 2.5,
		1) альдегидов 2) алканов 3)алкенов 4) алкинов	ОК 04,
			OK 07
			ЛР 16
17	1	Кислотные свойства этанола проявляются в реакции с	ПК 2.5,
		1) натрием 2) оксидом меди (II) 3) хлороводородом 4) подкисленным раствором перманганата калия	ОК 04,
		3) хлороводородом 4) подкисленным раствором перманганата калия	OK 04,
			OK 07
10			ЛР 16
18	1	При взаимодействии пропанола-1 с натрием образуется: 1) пропен 2) пропилат натрия 3) этилат натрия 4)пропандиол-1,2	ПК 2.5,
		1) пропен 2) пропилат натрия 3) этилат натрия 4)пропандиол-1,2	ОК 04,
			OK 07
			ЛР 16
19	1	Молекулярная формула продукта взаимодействия пентанола-1	ПК 2.5,
		с бромоводородом	111 2.5,
		1) $C_6H_{11}Br$ 2) $C_5H_{12}Br$ 3) $C_5H_{11}Br$ 4) $C_6H_{12}Br$	ОК 04,
			ОК 07
			ЛР 16
20	1	Со свежеосажденным гидроксидом меди (II) не будет	ПК 2.5,
		взаимодействовать : 1) глицерин 2) бутанон 3) пропаналь 4) пропандиол-1,2	OK 04,
		1) inpendingness 1,2	
			ОК 07 ЛР 16
21	1	Какой реагент используют для получения спиртов из алкенов?	ΠK 2.5,
	-	1) воду 2) пероксид водорода 3) слабый р-р H ₂ SO ₄ 4) р-р брома	11K 2.5,
			ОК 04,
			ОК 07
			ЛР 16
22	1	Пропанол-1 образуется в результате реакции, схема которой	ПК 2.5,
		1) $CH_3CH_2COH + H_2 \rightarrow$ 2) $CH_3CH_2COH + Cu(OH)_2 \rightarrow$	010.04
		3) $CH_3CH_2C1 + H_2O \rightarrow$ 4) $CH_3CH_2COH + Ag_2O \rightarrow$	OK 04,
			OK 07
			ЛР 16
23	1	В результате спиртового брожения глюкозы происходит образование	ПК 2.5,
		1) C ₂ H ₅ OH и CO 2) CH ₃ OH и CO ₂ 3) C ₂ H ₅ OH и CO ₂ 4) CH ₃ -CH(OH)-COOH	ОК 04,
		2) C113-C11(O11)-COO11	,
			OK 07
24	4		ЛР 16
24	1	Водородные связи не образуются между молекулами: 1) метанола 3) воды	ПК 2.5,
		1) метапола 3) воды	ОК 04,
		2) пропанола 4) водорода	
			OK 07

				ЛР 16
25	-	24		
25	1		нгликоль и глицерин являются:	ПК 2.5,
		1) гомологами	2) первичным, вторичным и третичным спиртами	
		3) изомерами	4) одноатомным, двухатомным, трехатомным спиртами	ОК 04,
				ОК 07
				ЛР 16

Оценочная шкала:

10% ошибок – «отлично» (22 -25 правильных ответов);

20% ошибок – «хорошо» (20- 21 правильных ответов);

30% ошибок – «удовлетворительно» (17-19 правильных ответов)

4.8. Задания в тестовой форме по теме «Фенолы»

$N_{\underline{0}}$	Кол	Содержание задания в тестовой форме	Форми-
п/п	-во бал лов		руемые ОК, ПК, ЛР
		Выберите один правильный	1
		вариант	
1	1	Фенолы в отличии от этанола:	ПК 2.5,
		1) кристаллическое вещество	
			ОК 04,
		2) имеет запах гуаши	,
		•	OK 07
		3) ароматическое соединение	ЛР 16
		4) все ответы верны	
2	1	Фенол не взаимодействует:	ПК 2.5,
		1) с натрием 3) соляной кислотой	
		2) гидроксидом калия 4) бромной водой	ОК 04,
		<u>-</u>	
			OK 07
			ЛР 16

3	1	Химическое взаимодействие возможно между веществами, формулы	ПК 2.5,
		которых:	O. T. C. A.
		1) С ₆ H ₅ OH и NaCl 3) С ₆ H ₅ OH и NaOH 2) С H ON 2 2 NaOH	ОК 04,
		2) C ₆ H ₅ OH и HCl 4) C ₆ H ₅ ONa и NaOH	OK 07
			ЛР 16
4	1	При взаимодействии фенола с натрием образуются	ПК 2.5,
		1) фенолят натрия и вода 2) фенолят натрия и водород	074.04
		3) бензол и гидроксид натрия 4) бензоат натрия и водород	ОК 04,
			ОК 07
			ЛР 16
5	1	При замещении водорода в ароматическом кольце на гидроксильную	ПК 2.5,
		группу образуется: 1) сложный эфир 2) простой эфир 3) предельный спирт 4) фенол	OK 04,
		1) estosation squip 2) inporton squip 3) inpogesionism emipt 1) quinosi	
			OK 07
			ЛР 16
6	1	Фенол может быть получен в реакции 1) дегидратации бензойной кислоты 2) гидрирования бензальдегида	ПК 2.5,
		3) гидратации стирола 4) хлорбензола с гидроксидом калия	ОК 04,
			ОК 07
			ЛР 16
7	1	Отличить фенол от метанола можно с помощью:	ПК 2.5,
		· · · · · · · · · · · · · · · · · · ·	1110 2.00,
		1) Na 2) NaOH 3) Cu(OH) ₂ 4) FeCl ₃	ОК 04,
			ОК 07
			ЛР 16
8	1	Самые сильные кислотные свойства из предложенных веществ	ПК 2.5,
		1) page 2) versyer 2) hever 4) errors	OK 04,
		1) вода 2) метанол 3) фенол 4) этанол	OK 04,
			OK 07
			ЛР 16
		Соотнесите	
9	1	Установите соответствие между исходными веществами и	У331
		продуктами, которые преимущественно образуются при их	ОК1 ПК1.6 ПК2.1ПК2.2
		взаимодействии: ИСХОДНЫЕ ВЕЩЕСТВА ПРОДУКТЫ ВЗАИМОДЕЙСТВИЯ	11K2.111K2.2
		1) C ₆ H ₅ OH + K A) 2,4,6-трибромфенол + 3HBr	
		2) C ₆ H ₅ OH + KOH Б) 3,5-дибромфенол + HBr	
		3) $C_6H_5OH + 3HNO_3$ В) фенолят калия + H_2	
		4) C ₆ H ₅ OH +3 Br ₂ (p-p) Г) 2,4,6-тринитрофенол + H ₂ O	
		Д) 3,5-динитрофенол + HNO ₃	
		Е) фенолят калия + Н ₂ О	

Максимальное количество баллов по всему заданию: 9 баллов

Оценочная шкала:

10% ошибок – «отлично» (8-9 правильных ответов); 20% ошибок – «хорошо» (7 правильных ответов);

4.9. Задания в тестовой форме по теме «Карбоновые кислоты»

No	Кол		Форми-
710	-BO		Форми
п/п	-во бал	Содержание задания в тестовой форме	руемые
11/11	ЛОВ	Содержиние зидиния в тестовой форме	ОК, ПК, ЛР
	лов		
		Выберите один правильный	
	1	вариант	
1	1	Функциональная группа карбоновых кислот называется	ПК 2.5,
		1) карбонильной	
		2) гидроксильной	ОК 04,
		3) карбоксильной	016.07
		4) сложноэфирной	OK 07
			ЛР 16
2	1	Реагирует с аммиачным раствором оксида серебра, давая реакцию	ПК 2.5,
		«серебряного зеркала», следующая кислота	
		1) метановая	ОК 04,
		2) этановая	
		3) пальмитиновая	OK 07
		4) олеиновая	ЛР 16
3	1	Обесцвечивает бромную воду следующая кислота	ПК 2.5,
		1) C ₁₅ H ₃₁ COOH	111(2.0,
		2) CH ₃ COOH	ОК 04,
		3) HCOOH	,
		4) C ₁₇ H ₃₁ COOH	OK 07
		·/	ЛР 16
4	1	Укажите формулу непредельной кислоты	ПК 2.5,
		1) C ₁₅ H ₃₁ COOH	,
		2) CH ₃ COOH	ОК 04,
		3) HCOOH	
		4) C ₁₇ H ₃₁ COOH	OK 07
			ЛР 16
5	1	С увеличением числа атомов углерода в молекулах предельных	ПК 2.5,
		одноосновных кислот их растворимость в воде	1111 210,
		1) уменьшается	ОК 04,
		2) увеличивается	
		3) увеличивается незначительно	OK 07
		4) не изменяется	ЛР 16
6	1	Укажите формулу кислоты, являющейся альдегидокислотой	ПК 2.5,
		1) C ₁₇ H ₃₁ COOH	,
		2) HCOOH	ОК 04,
		3) CH ₃ COOH	1
		4) C ₁₅ H ₃₁ COOH	OK 07
		· · · · · · · · · · · · · · · · · · ·	ЛР 16

7	1	Уксусная кислота не реагирует со следующим металлом	ПК 2.5,
		1) Zn	OIC 04
		2) Mg 3) Cu	OK 04,
		4) Ca	ОК 07
		,, -,-	ЛР 16
8	1	Самым слабым электролитом из указанных кислот является:	ПК 2.5,
		1) муравьиная 2) уксусная 3) серная 4) пропионовая	ОК 04,
			ОК 07
			ЛР 16
9	1	Уксусная кислота реагирует со всеми веществами, формулы которых входят в группу:	ПК 2.5,
		1) Cu; Na ₂ O; KOH	OK 04,
		2) K ₂ CO ₃ ; Na; C ₂ H ₅ OH	OK 07
		2) CH OH N CO CI	ЛР 16
		3) CH ₃ OH; Na ₂ SO ₄ ; Cl ₂	
		4) NaOH; HCl; Br ₂	
10	1	В ходе реакции этерификации карбоновые кислоты реагируют	ПК 2.5,
		1) с металлами	017.04
		2) с основаниями3) со спиртами	OK 04,
		4) с кислотами	ОК 07
			ЛР 16
11	1	Определите вещество X в следующей схеме превращений:	ПК 2.5,
		метанол \rightarrow X \rightarrow уксусная кислота	OTC 04
		 этилформиат этаналь 	OK 04,
		3) метаналь	OK 07
		4) метилацетат	ЛР 16
12	1	Двойственную функцию имеет:	ПК 2.5,
		1) стеариновая кислота 3) олеиновая кислота	
		2) этиленгликоль 4) уксусный альдегид	OK 04,
		2) этиленгликоль 4) уксусный альдегид	OK 07
			ЛР 16

протекать реакция взаимодействия с: 1) натрием 2) оксидом натрия 3) спиртом	ОК 04, ОК 07 ЛР 16
3) спиртом	
3) Chiptom	
4) гидроксидом натрия	
14 1 В карбоновых кислотах за счет «-OH» в «-COOH» в гру протекать реакция взаимодействия с :	ппе может ПК 2.5,
1) натрием	ОК 04,
2) оксидом натрия	ОК 07
3) спиртом	ЛР 16
4) гидроксидом натрия	
15 1 Название вещества, формула которого CH ₃ -CH ₂ -CH ₂ -CH ₂ -	СООН ПК 2.5,
1) пентановая кислота 2) пентанол 3) пентаналь	4) пентен-1 ОК 04,
	OK 07
	ЛР 16
16 1 Этилацетат образуется при взаимодействии этановой кисло 1) этаном	оты с ПК 2.5,
2) этанолом	OK 04,
3) этаналем	ОК 07 ЛР 16
4) этандиолом	
17 Вещество Y в цепочке превращений + cuO + Ag ₂ O (ам. p-p)	ПК 2.5,
$C_2H_5OH \longrightarrow XY$	ОК 04,
относится к классу: 1) алкенов 2) карбоновых кислот	OK 07
3) альдегидов 4) спиртов	ЛР 16
18 1 Катализатором в реакции взаимодействия уксусной и с хлором при образовании монохлоруксусной кислоти	
является:	OK 04,
1) фосфор белый	OK 07
2) фосфор красный	ЛР 16
3) сера молотая	
4) хлорид алюминия	

19	1	Аминоуксусная кислота образуется при взаимодействии аммиака с:	ПК 2.5,
		1) уксусной кислотой	ОК 04,
		2) дихлоруксусной кислото й	ОК 07 ЛР 16
		3) монохлоруксусной кислотой	
		4) трихлоруксусной кислотой	
20	1	Определите вещество X в следующей схеме превращений:	ПК 2.5,
		метанол \rightarrow X \rightarrow уксусная кислота	
		1) этилформиат	ОК 04,
		2) этаналь	
		3) метаналь	OK 07
		4) метилацетат	ЛР 16

Максимальное количество баллов по всему заданию: 20 баллов

Оценочная шкала:

10% ошибок – «отлично» (18-20 правильных ответов);

20% ошибок - «хорошо» (16-17 правильных ответов);

30% ошибок – «удовлетворительно» (14-15 правильных ответов)

5. Задания в тестовой форме по теме «Амины»

No	Кол	Содержание задания в тестовой форме	Форми-
п/п	-во бал		руемые ОК, ПК,ЛР
	ЛОВ		010, 1110,511
		Выберите один правильный	
		вариант	
1	1	При замещении водорода в аммиаке на органические радикалы	ПК 2.5,
		получают:	
			ОК 04,
		1) амины 2) амиды 3) азиды 4) нитраты	
			OK 07
			ЛР 16
2	1	К ароматическим аминам относится	ПК 2.5,
		1) метиламин 2) бутиламин 3) триэтиламин 4) дифениламин	
			OK 07
			ЛР 16
3	1	К первичным аминам не относится	
		1) изопропиламин 2) бутиламин 3) метилэтиламин 4) анилин	ОК 04,
			ОК 07

			ЛР 16
4	1	Вещество, относящееся к аминам, имеет формулу	ПК 2.5,
			CHOH
		1)06113 1102 2) 06113 1112 3)06113 0113	OK 04,
			OK 07
5	1	Вещество СН3-NH-СН(СН3)2 относится к ряду	ЛР 16 ПК 2.5,
	•		
		1) амидов; 2) ароматических ам	минов; OK 04,
		3) алифатических аминов; 4) нитросоединений	OK 07
			ЛР 16
6	1	Вещество, формула которого имеет вид C ₆ H ₅ -N(CH ₃)2, называется ПК 2.5,
		1) анилин 2) диметилфенилам	ок 04,
		3) диметилфенол 4) диметилнитробен	нзол ОК 07
			ЛР 16
7	1	Амины получаются в результате	ПК 2.5,
		1) нитрования алканов 2) окисления альдегидов	OK 04,
		3) восстановления нитросоединений	,
		4) взаимодействия карбоновых кислот с аммиаком	ОК 07 ЛР 16
8	1	Анилин образуется при	ПК 2.5,
		1) восстановлении нитробензола 2) окисле	ении нитробензола ОК 04,
		3) дегидрировании нитроциклогексана 4) нитров	ании бензола ОК 07
			ЛР 16
9	1	Основные свойства не проявляет вещество, формула	а которого: ПК 2.5,
		1) C ₂ H ₅ NH ₂ ; 3) C ₆ H ₅ NH ₂ ;	OK 04,
		2) HCOOH; 4) (C ₂ H ₅) ₂ NH	OK 07
			ЛР 16
10	1	При горении метиламина кроме углекислого газа об	бразуется: ПК 2.5,
		1) водород и оксид азота (II); 3) вода и азот	OK 04,
		2) водород и азот; 4) вода и окси	ид углерода (II) ОК 07
4.4	4		ЛР 16
11	1	Даны вещества: 1) вода; 2) соляная кислота; 3) кисло натрия. Метиламин реагирует с веществами:	ррод; 4) гидроксид ПК 2.5,
		1) 2, 3 3) 3, 4	OK 04,
		2) 1, 2, 3 4) 2, 3, 4	ОК 07
		, , ,	ЛР 16

12	1	Самые сильные основные свойства проявляет вещество, формула	ПК 2.5,
12	•	которого:	11K 2.5,
		1) C ₆ H ₅ NHCH ₃ 3) (C ₆ H ₅) ₂ NH	ОК 04,
		2) NH ₃ 4) C ₂ H ₅ NH ₂	,
			OK 07
			ЛР 16
13	1	Основные свойства аминов проявляются при взаимодействии:	ПК 2.5,
		1) с кислотами 3) индикаторами	ОК 04,
		2) водой 4) все ответы верны	OK 04,
		2) Bodon if bee orberta bepital	OK 07
			ЛР 16
14	1	Даны вещества: 1) вода; 2) соляная кислота; 3) бром; 4) гидроксид натрия.	ПК 2.5,
		Анилин реагирует с веществами:	
		1) 2, 3	ОК 04,
		2) 1, 2, 3 4) 2, 3, 4	OK 07
		2) 1, 2, 3	ЛР 16
15	1	Основные свойства имеет вещество, формула которого:	ПК 2.5,
		1) C ₂ H ₅ NO ₂ 3) C ₆ H ₅ NH ₂	,
		2) HCOOH 4) C ₂ H ₄	ОК 04,
			OK 07
			ЛР 16
16	1	Самые сильные основные свойства имеет вещество, формула которго:	ПК 2.5,
		1) NH_3 3) $(C_6H_5)_2NH$	111(2.5,
		2) $(C_2H_5)_2NH$ 4) $C_2H_5NH_2$	ОК 04,
			OI
			ОК 07 ЛР 16
17	1	Диэтиламин образует соль при взаимодействии с веществом, формула	
1,	1	которого:	ПК 2.5,
		1) NaOH 3) H ₂ O	ОК 04,
		2) H ₂ SO ₄ 4) C ₂ H ₅ NO ₂	
			OK 07
			ЛР 16
18	1	При взаимодействии этиламина с водным раствором HBr образуется	ПК 2.5,
		1) бромэтан 2) бромид аммония	ОК 04,
		3) Snovaya atayan ayaya	016.07
		3) бромид этиламмония 4) аммиак	OK 07
19	1	Varya naayayyy yanawanyy 111g ayyawaa 9	ЛР 16
19	1	Какие реакции характерны для анилина?	ПК 2.5,
		a) $C_6H_5NH_2 + Br_2 \rightarrow$ 6) $C_6H_5NH_2 + NaOH \rightarrow$	ОК 04,
		B) $C_6H_5NH_2 + HCl \rightarrow \Gamma$ Γ $C_6H_5NH_2 + C_6H_6 \rightarrow 1$ Γ	,
		1) б 2) а, в 3) б, г 4) г	OK 07
			ЛР 16

20	1	Реакция восстановления ароматических нитросоединений	ПК 2.5,
		называется:	
			ОК 04,
		1) реакцией Вюрца 3) реакцией Марковникова	0.74.0.
		2) реакцией Зинина 4) реакцией Зайцева	OK 07
		2) реакцией Зинина 4) реакцией Зайцева	ЛР 16
21	1	Наличием неподелённой электронной пары у атома азота в	ПК 2.5,
		диэтиламине можно объяснить его	,
		1) основные свойства 2) способность к горению	ОК 04,
		3) способность к хлорированию 4) летучесть	
			OK 07
			ЛР 16
		Напишите формулы и реакции аминов	
22	4	Напишите структурные формулы следующих соединений:	ПК 2.5,
		1) 2-метилпропанамин-1	111(2.5,
		1) 2-MCIUIIIIpollanamun-1	ОК 04,
		2) диметиламин	,
		2) Annemiann	ОК 07
		3) метилпропилэтиламин	ЛР 16
		, ,	
		4) этилендиамин	
23	3	Напишите реакции по получению аминов:	ПК 2.5,
		- из галогеноалканов	
		- из солей аминов	ОК 04,
		- из нитросоединений	ОК 07
			ЛР 16
24	4	TT	
24	1	Напишите качественную реакцию на анилин	ПК 2.5,
			ОК 04,
			OK 04,
			OK 07
			ЛР 16
25	4	Составьте уравнения реакций по приведенной ниже схеме и укажите	ПК 2.5,
		условия их осуществления:	
			ОК 04,
		$CaC_2 \rightarrow C_2H_2 \rightarrow C_6H_6 \rightarrow C_6H_5NO_2 \rightarrow C_6H_5NH_2$	0.14.0.7
			OK 07
			ЛР 16

Максимальное количество баллов по всему заданию: 33 балла

Оценочная шкала:

10% ошибок – «отлично» (30 - 33 баллов);

20% ошибок – «хорошо» (26 - 29 баллов);

4.10. Задания в тестовой форме по теме «Аминокислоты»

No	Кол	Содержание задания в тестовой форме	Форми-
312	-BO	Содержание задания в гестовой форме	-
Π/Π	бал		руемыеОК,
11/11	лов		ПК
	лов		
		Выберите один правильный	
		вариант	
1	1	Какие из приведенных формул органических веществ относятся к	ПК 2.5,
		аминокислотам?	
		O O O O O O O O O O O O O O O O O O O	OK 04,
		a) $H_2N-C-NH_2$ 6) $H_3C-CH-C-OH$ B) $H_3C-C-NH_2$	OK 07
		NH ₂	
		$^{\rm NH_2}$ $^{\rm O}$ $^{\rm O}$ $^{\rm O}$ $^{\rm O}$ $^{\rm O}$ $^{\rm II}$ $^{\rm O}$ $^{\rm II}$ $^{\rm O}$ $^{\rm O}$ $^{\rm II}$ $^{\rm O}$ $^{\rm O}$ $^{\rm II}$ $^{\rm II}$ $^{\rm O}$ $^{\rm II}$ $^{\rm $	ЛР 16
		r) CH ₂ -C-OH д) H-C-NH ₂	
		ŃΗ,	
		1) а, в 2) а, д 3) б, г 4) в, д	
2	1	Укажите изомеры аминобутановой кислоты:	ПИ 2.5
_	1		ПК 2.5,
		O NH ₂ O O O O O O O O O O O O O O O O O O O	OK 04,
		a) NH-CH-C-OH 6) CH-C-OH b) CH-CH-CH-C-OH	OR 04,
		CH CH NH	OK 07
		Cn ₃ Cn ₃ Nn ₂	ЛР 16
		СН ₃ О СН ₃ О О О О О О О О О О О О О О О О О О О	
		NH, CH,	
		, , , , , , , , , , , , , , , , , , ,	
		1) а, г 2) б, в 3) г, д 4) д, е	
3	1	Аминоэтановую кислоту можно получить взаимодействием	ПК 2.5,
		аммиака с	OTC 0.4
		1) уксусной кислотой 2) хлоруксусной кислотой	ОК 04,
		3) ацетальдегидом 4) этиленом	OK 07
			ЛР 16
4	1	A MANAGAMAN AND AND AND AND AND AND AND AND AND A	
4	1	Аминоуксусную кислоту можно получить в одну стадию из кислоты 1) уксусной 2) хлоруксусной	ПК 2.5,
		, 10 0	OIC 04
		3) пропионовой 4) 2-хлорпропионовой	ОК 04,
			OK 07
			ЛР 1

5	1	A	TTTC 0. 5
5	1	Аминокислоты не могут реагировать 1) с основаниями и кислотами	ПК 2.5,
		2) с кислотами и спиртами	ОК 04,
		3) с предельными углеводородами	
		4) между собой	OK 07
			ЛР 16
6	1	Вещество, формула которого NH2-CH2-COOH, является	ПК 2.5,
		1) органической кислотой 2) органическим основанием	ОК 04,
		3) амфотерным веществом	OK 04,
		4) амином	OK 07
		, ,	ЛР 16
7	1	Аминокислоты не реагируют с	ПК 2.5,
		1) этиловым спиртом 2) кислотами и основаниями	ОК 04,
			OK 04,
		3) карбонатом натрия 4) предельными углеводородами	ОК 07
			ЛР 16
8	1	Аминокислоты не реагируют ни с одним из двух веществ	ПК 2.5,
		1) КОН и CH ₃ OH 2) КСl и CH ₄ 3) CH ₃ NH ₂ и Na 4) NH ₃ и H ₂ O	OK 04,
			,
			OK 07
			ЛР 16
9	1	Аминоуксусная кислота реагирует с каждым из веществ	ПК 2.5,
		1) HCl, KOH 2) NaCl, NH ₃	ОК 04,
		3) C ₂ H ₅ OH, KCl 4) CO ₂ , HNO ₃	ОК 07
			ЛР 16
10	1	При взаимодействии аминокислот между собой образуется	ПК 2.5,
		1) сложный эфир 2) пептид	ОК 04,
			OK 04,
		3) новая аминокислота 4) соль аминокислоты	OK 07
			ЛР 16
11	1	При взаимодействии аминокислоты и соляной кислоты	ПК 2.5,
		1) образуются соль аминокислоты 2) образуются аммиак и карбоновая кислота	ОК 04,
		3) образуются соль аминокислоты и основание	OK 04,
		4) выделяется водород	OK 07
			ЛР 16
12	1	Сложный эфир образуется при взаимодействии аминоуксусной кислоты с	ПК 2.5,
		1) гидроксидом натрия	ОК 04,
			ОК 07
		2) раствором серной кислоты	ОК 07 ЛР 16
		3) аминоуксусной кислотой	J11 10
		- ,	
		4) этанолом	

13	1	Взаимодействию глицина (аминоуксусной кислоты) с хлороводородной кислотой отвечает схема:	ПК 2.5,
		1) $C_2H_8N_2 \rightarrow C_2H_{10}Cl_2N_2$ 2) $C_3H_7NO_2 \rightarrow C_3H_8ClNO_2$	ОК 04,
		3) $C_2H_5NO_2 \rightarrow C_2H_6CINO_2$ 4) $C_2H_5NO \rightarrow C_2H_6CINO$	ОК 07 ЛР 16
14	1	Аминокислотой не является вещество, формула которого	ПК 2.5,
		1) NH ₂ CH ₂ CH ₂ COOH 3)NH ₂ CH ₂ CH ₂ CH ₂ COOH	ОК 04,
		2) NH ₂ CH ₂ CH ₂ COOH 4) NH ₂ CH ₂ CH ₂ COH	
			OK 07
1.5	1	N/	ЛР 16
15	1	Укажите пару веществ, с которыми взаимодействуе т аминоуксусная кислота:	ПК 2.5,
		1) CO ₂ и HNO ₃ 2) HCl и КОН	ОК 04,
		3) NaCl и NH ₃ 4) C ₂ H ₅ OH и KCl	
			OK 07
16	1	V	ЛР 16
10	1	Укажите вещество, формула которого включает атомы трех элементов:	ПК 2.5,
		1) аминоуксусная кислота 3) нитробензол	ОК 04,
		2) этилацетат 4) карбид кальция	016.07
			ОК 07 ЛР 16
17	1	Число возможных структурных изомеров для вещества, формула	ПК 2.5,
		которого СН3-СН -СООН:	1110 2.5,
		I	ОК 04,
		NH ₂	OK 07
		1) 1 2) 2 3) 3 4) 4	ЛР 16
	<u> </u>	Осуществите цепочку превращений	
18	4	Напишите уравнения реакций, при помощи которых можно	ПК 2.5,
		осуществить следующие превращения:	,
		Этанол → этаналь → этановая кислота → хлорэтановая кислота →	ОК 04,
		→ 2-аминоэтановая кислота.	ОК 07
		Укажите условия осуществления реакций	ЛР 16
	ı	· · · · · · · · · · · · · · · · · · ·	

Максимальное количество баллов по всему заданию: 21 балл

Оценочная шкала:

10% ошибок – «отлично» (18-21балл)

20% ошибок – «хорошо» (16-17 баллов)

30% ошибок – «удовлетворительно» (14-15баллов)

4.11. Задания в тестовой форме по теме «Белки»

No	Кол		Форми-				
	-во		руемыеОК,				
Π/Π	бал	Содержание задания в тестовой форме	ПК, ЛР				
	лов						
		Выберите один правильный					
1	вариант 1 1 Мономерами белков выступают: ПК 2.5						
1	1	Мономерами белков выступают:	ПК 2.5,				
		1) аминокислоты 2) моносахариды	OK 04,				
		3) нуклеотиды 4) остатки фосфорной кислоты	,				
			OK 07				
			ЛР 16				
2	1	Белки приобретают желтую окраску под действием	ПК 2.5,				
		1) HNO ₃ (конц.) 2) Cu(OH) ₂	ОК 04,				
		3) H ₂ SO ₄ (конц.) 4) [Ag(NH ₃) ₂]OH	ОК 07				
		· - 	ЛР 16				
3	1	Вторичная структура белка удерживается	ПК 2.5,				
		1) водородными связями 2) дисульфидными мостиками	,				
		3) амидными связями 4) солевыми мостиками	ОК 04,				
			ОК 07				
			ЛР 16				
4	1	При неполном гидролизе белка могут образоваться	ПК 2.5,				
		1) дипептиды 2) глюкоза					
		3) дисахариды 4) глицерин	ОК 04,				
			OK 07				
			ЛР 16				
5	1	При полном гидролизе полипептида образуется(-ются)	ПК 2.5,				
		1) глицерин 2) глюкоза	ОК 04,				
		3) карбоновые кислоты 4) аминокислоты	OR 01,				
			OK 07				
			ЛР 16				
6	1	Окраска смеси белка с гидроксидом меди (II) при нагревании: 1) голубая 2) синяя	ПК 2.5,				
		3) красная 4) розово-фиолетовая	ОК 04,				
			ОК 07				
			ЛР 16				
		Осуществите цепочку превращений					
7	6	Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:	ПК 2.5,				
		этен \rightarrow этиловый спирт \rightarrow уксусный альдегид \rightarrow уксусная кислота	ОК 04,				
		ightarrow хлоруксусная кислота $ ightarrow$ аминоуксусная кислота $ ightarrow$ полипептид	ОК 07				
		10011111/4	ЛР 16				

Максимальное количество баллов по всему заданию: 12 баллов

Оценочная шкала:

10% ошибок – «отлично» (11-12 баллов); 20% ошибок - «хорошо» (9 - 10 баллов);

30% ошибок – «удовлетворительно» (8 баллов)

4.12. Задания в тестовой форме по теме «Жиры»

No	Кол		Форми-
	-во		руемые
п/п	бал	Содержание задания в тестовой форме	ОК, ПК,
	ЛОВ		ЛР
		Выберите один правильный	
		вариант	
1	1	При взаимодействии жира с водным раствором гидроксида натрия	ПК 2.5,
		одним из продуктов будет	
		1) 2) 1)	ОК 04,
		1) высшая карбоновая кислота 2) глицерин 3) вода 4) водород	ОК 07
			ЛР 16
2	1	Www.no.no.num.n.n.n.n.n.n.n.n.n.n.n.n.n.n.n.n.n.n	
4	1	Жидкие растительные масла не вступают в реакцию с	ПК 2.5,
		1) водородом 2) раствором перманганата калия	ОК 04,
		3) глицерином 4) раствором гидроксида натрия	ОК 07
			ЛР 16
3	1	Твердые жиры вступают в реакцию с	ПК 2.5,
		1) бензолом 2) раствором сульфата меди	ОК 04,
		3) глицерином 4) раствором гидроксида натрия	OK 07
			ЛР 16
4	1	К реакциям этерификации относится	ПК 2.5,
		1) нитрование бензола 2) омыление жиров	,
		2) 1 1	ОК 04,
		3) нитрование целлюлозы 4) получение диэтилового эфира из этанола	010.07
			OK 07
			ЛР 16

5	1	При взаимодействии жира с водным раствором гидроксида натрия	ПК 2.5,
		получают	OK 04,
		1) соли высших карбоновых кислот 2) высшие карбоновые кислоты	
		3) воду 4) водород	OK 07
			ЛР 16
6	1	Олеиновая кислота (C ₁₇ H ₃₃ COOH) сочетает в себе свойства карбоновой кислоты и	ПК 2.5,
			ОК 04,
		1) амина 2) спирта 3) альдегида 4) алкена	OK 07
			ЛР 16
7	1	Для превращения жидких жиров в твердые используют реакцию	ПК 2.5,
		1) дегидрогенизации 2) гидратации 4) голума сумулизации	OV 04
		3) гидрогенизации 4) дегидроциклизации	OK 04,
			OK 07
8	1	B	ЛР 16
o	1	В результате гидролиза жидкого жира образуются 1) твердые жиры и глицерин	ПК 2.5,
		2) глицерин и предельные кислоты	ОК 04,
		3) глицерин и непредельные кислоты	ОК 07
		4) твердые жиры и смесь кислот	ЛР 16
9	1	В каком веществе жиры не растворяются?	ПК 2.5,
		1) в бензоле 2) в воде 3) в бензине 4) в хлороформе	OK 04,
			ОК 07 ЛР 16
10	1	При гидролизе каких веществ в организме образуется глицерин?	ПК 2.5,
			111(2.3,
		1) белков 2) углеводов	ОК 04,
		3) жиров 4) аминокислот	ОК 07
			ЛР 16
11	1	В состав многих растительных жиров входит линоленовая кислота С17Н29СООН. Число двойных связей в молекуле этой кислоты равно:	ПК 2.5,
		·	ОК 04,
		1) одному 2) двум	
		3) трём 4) двойных связей С=С в данном веществе нет	ОК 07 ЛР 16
12	1	Для получения мыла используют реакцию	
12	1		ПК 2.5,
		1) гидрогенизации жиров 2) щелочного гидролиза жиров	ОК 04,
		3) этерификации карбоновых кислот 4) гидратации алкинов	ОК 07
			ЛР 16

13	1	В организме процесс переваривания жиро	в начинается с реакции	ПК 2.5,
		1) гидролиза 2)	полимеризации	ОК 04,
		3) гидрирования 4) д	цегидрирования	ОК 07
				ЛР 16
14	1	Жидкие жиры превращаются в твёрдые ро	еакцией:	ПК 2.5,
		1) гидратации 2) ги	дролиза	ОК 04,
		3) полимеризации 4) ги	дрирования	ОК 07
				ЛР 16
		Напишите уравнения	реакций	
		жиров		
15	1	Напишите схему образования жиров		ПК 2.5,
				ОК 04,
				OK 04,
				ОК 07
				ЛР 16
16	1	Напишите реакцию гидрогенизации (прев	ращения жидких жиров в	ПК 2.5,
		твердые)		OIC 04
		• • •		ОК 04,
				ОК 07
				ЛР 16

Максимальное количество баллов по всему заданию: 16 баллов

Оценочная шкала:

10% ошибок – «отлично» (14 - 16 правильных ответов);

20% ошибок – «хорошо» (12 - 13 правильных ответов);

30% ошибок – «удовлетворительно» (10 - 11 правильных ответов)

4.13. Задания в тестовой форме по теме «Углеводы»

№ п/п	Кол -во бал лов	Содержание	задания в тестовой форме	Форми- руемые ОК, ПК, ЛР
		Выбер	рите один правильный вариант	
1	1	Какие вещества образуются 1 1) глюкоза и фруктоза	при гидролизе сахарозы? 2) крахмал	ПК 2.5,
		3) глюкоза и этанол	4) целлюлоза	ОК 04,
				ОК 07 ЛР 16

2	1	Водные растворы сахарозы и глюкозы можно различить с помощью 1) активного металла 2) хлорида железа (III)	ПК 2.5,
		3) гидроксида натрия 4) аммиачного раствора оксида серебра	ОК 04,
) indpending nurpin	OK 07
			ЛР 16
3	1	К восстанавливающим сахарам относится	ПК 2.5,
		1) глюкоза 2) фруктоза	ОК 04,
		3) целлюлоза 4) сахароза	OK 07
			ЛР 16
4	1	На какие группы подразделяют углеводы по типу функциональных	ПК 2.5,
-	_	групп?	1110 2.3,
			ОК 04,
		1) альдозы и кетозы 2) моносахариды и дисахариды	311 0 1,
			OK 07
		3) глюкозы и фруктозы 4) пентозы и гептозы	ЛР 16
5	1	Глюкоза и фруктоза	ПК 2.5,
3	1	1 люкоза и фруктоза	11K 2.3,
		1) оптические изомеры 2) структурные изомеры	ОК 04,
		3) олигосахариды 4) гомологи	016.07
		1) Temetrerii	OK 07
	-		ЛР 16
6	1	Образование полисахаридов из моносахаридов — это реакция	ПК 2.5,
		1) полимеризации 2) поликонденсации	ОК 04,
		3) этерификации 4) гидролиза	ОК 07
			ЛР 16
7	1	Как химическим путем отличить крахмал от целлюлозы?	ПК 2.5,
,	-	Rak Anim reckin hyrem oran into kpazinasi or qesishosiosbi.	111 2.5,
		1) реакция с Cu(OH) ₂	ОК 04,
		2) реакция с йодом	ОК 07
		3) реакция этерификации	ЛР 16
		4) гидролиз с последующей реакцией «серебряного зеркала»	
		тидролиз с последующей реакцией «сереоряного зеркала»	
8	1	К выделению наибольшего количества энергии приводит процесс с	ПК 2.5,
		участием углеводов	1110 2.0,
		1) окисления кислородом воздуха 2) восстановления	ОК 04,
		3) брожения 4) карбоксилирования	ŕ
			OK 07
			ЛР 16
9	1	При окислении глюкозы аммиачным раствором оксида серебра	ПК 2.5,
		образуются	
		1) соль глюконовой кислоты и металлическое серебро 2) этанол и оксид серебра (I)	ОК 04,
		3) глюконовая кислота и вода	OK 07
		4) сорбит и металлическое серебро	ЛР 16
		т) сороит и металлическое сереоро	

9	1	Полисахаридом является	ПК 2.5,
		1) глюкоза 2) рибоза 3) сахароза 4) крахмал	ОК 04,
			OK 07
			ЛР 16
10	1	Дисахаридом является углевод, название которого	ПК 2.5,
		1) крахмал 2) сахароза 3) глюкоза 4) целлюлоза	OK 04,
			OK 07
			ЛР 16
11	1	Глюкоза не вступает в реакцию	ПК 2.5,
		1) окисления 2) гидрирования	OK 04,
		2) гидролиза 4) этерификации	OK 07
			ЛР 16
12	1	Альдегидоспиртом является	ПК 2.5,
		1) глюкоза 2) фруктоза 3) сахароза 4) крахмал	OK 04,
			ОК 07 ЛР 16
13	1	Верны ли следующие суждения об углеводах?	ПК 2.5,
		А. Целлюлозу используют для получения ацетатного волокна.	ОК 04,
		Б. В живых организмах углеводы превращаются в жиры.	OK 07
		1) верно только А 2) верно только Б	ЛР 16
		3) верны оба суждения 4) оба суждения неверны	
14	1	Несколько функциональных групп -ОН содержат молекулы	ПК 2.5,
		1) глицерина и фенола 2) глицерина и глюкозы 3) фенола и формальдегида 4) сахарозы и формальдегида	ОК 04,
		э) фенола и формальдегида +) сахарозы и формальдегида	OK 04,
			OK 07
			ЛР 16
15	1	Как альдегид и как спирт глюкоза взаимодействует с веществом, формула которого	ПК 2.5,
		1) Ag ₂ O 2) H ₂ 3) Cu(OH) ₂ 4) KOH	ОК 04,
		3) Cu(O11)2 +) NO11	OK 07
			ЛР 16
16	1	Газообразным продуктом спиртового брожения глюкозы является	ПК 2.5,
		1) CH ₄ 2) CO ₂ 3) O ₂ 4) CO	ОК 04,
			ОК 07
			ЛР 16

17	1	Этанол образуется при спиртовом брожении	ПК 2.5,		
		1) целлюлозы 3) крахмала			
		2) глюкозы 4) сорбита	ОК 04,		
			ОК 07		
			ЛР 16		
18	1	Элементарным звеном полимерной молекулы крахмала является	ПК 2.5,		
		остаток			
		1) α-глюкозы 2) β-глюкозы	ОК 04,		
		3) фруктозы 4) сахарозы			
			OK 07		
			ЛР 16		
19	1	Наличие пяти гидроксогрупп в молекуле глюкозы может быть	ПК 2.5,		
		доказано взаимодействием ее с			
		1) бромной водой 2) уксусной кислотой	ОК 04,		
			ОК 07		
		3) аммиачным раствором оксида серебра 4) этиловым спиртом	ЛР 16		
20	1	Для распознавания глюкозы (в смеси с фруктозой) используют	ПК 2.5,		
		1) индикатор и раствор щелочи 2) бромную воду	ОК 04,		
		3) соляную кислоту 4) аммиачный раствор оксида серебра(I)	ОК 07		
			ЛР 16		
21	1	Какие вещества образуются в организме в результате полного окисления глюкозы?	ПК 2.5,		
			ОК 04,		
		1) CO ₂ , H ₂ O, NH ₃ 2) CO, H ₂ O, NH ₃	016.07		
		3) CO, H ₂ O 4) CO ₂ , H ₂ O	OK 07		
		7, 002, 1120	ЛР 16		
		Напишите формулы и реакции			
	углеводов				

22	3	Напишите структурные формулы таутомерных форм глюкозы:	ПК 2.5,
		- α – глюкозы;	ОК 04,
		- β – глюкозы;	OK 07
		- альдегидной формы	ЛР 16
23	1	Напишите реакцию с участием альдегидной группы глюкозы –	ПК 2.5,
		восстановление (гидрирование)	ОК 04,
			OK 07
			ЛР 16
24	1	Напишите реакцию «серебряного зеркала» альдозы с реактивом	ПК 2.5,
		Толленса (упрощенный вариант)	ОК 04,
			OK 07
			ЛР 16
25	1	Напишите реакцию окисления глюкозы гидроксидом меди (II)	ПК 2.5,
		(упрощенный вариант)	ОК 04,
			ОК 07
			ЛР 16

Максимальное количество баллов по всему заданию: 27 баллов

Оценочная шкала:

10% ошибок – «отлично» (24 -27 правильных ответов);

20% ошибок – «хорошо» (20- 23 правильных ответов);

30% ошибок – «удовлетворительно» (17-19 правильных ответов

4.14. Задания по теме «Алифатические гидроксикислоты»

$N_{\underline{0}}$	Кол		Форми-
п/п	-во бал	Содержание задания	Руемые ОК, ПК, ЛР
	ЛОВ		OK, IIK, JIP
		Выполните задания	
1	2	Назовите по заместительной номенклатуре глицериновую кислоту CH ₂ (OH)CH(OH)COOH	ПК 2.5,
		яблочную кислоту НООССН(ОН)СН ₂ СООН	ОК 04,
			ОК 07
			ЛР 16
2	3	Запишите примеры	ПК 2.5,
		α – гидроксикислоты	
		β - гидроксикислоты	ОК 04,
		γ - гидроксикислоты	ОК 07
			ЛР 16

3	2	Допишите уравнения реакций получения гидроксикислот CH ₃ CH ₂ CH(Br)COOH + NaOH→	ПК 2.5,
		$CH_3CH(OH)COOH + AdoH \rightarrow$ $CH_3CH(OH)CN + 2H_2O \rightarrow$	ОК 04,
			ОК 07
			ЛР 16
4	2	Допишите реакции карбоксильной группы гидроксикислот CH ₃ CH ₂ CH(OH)COOH + NaOH→	ПК 2.5,
		$CH_3CH(OH)COOH + NaOH \rightarrow$ $CH_3CH(OH)COOH + CH_3OH \rightarrow$	ОК 04,
			ОК 07
			ЛР 16
5	3	Допишите реакции гидроксильной группы гидроксикислот HOCH ₂ COOH+ CH ₃ COCl →	ПК 2.5,
		CH ₃ CH(OH)COOH+ HBr → HOCH ₂ COOH+[O] →	ОК 04,
			ОК 07
			ЛР 16
6	1	Напишите специфическое свойство α – гидроксикислоты – реакцию этерификации (межмолекулярное взаимодействие)	ПК 2.5,
		$CH_3CH(OH)COOH + CH_3CH(OH)COOH → ЛАКТИД$	ОК 04,
			OK 07
			ЛР 16
7	1	Напишите специфическое свойство β – гидроксикислоты – реакцию дегидратации	ПК 2.5,
		$CH_3CH(OH)CH_2COOH \rightarrow$	ОК 04,
			ОК 07
			ЛР 16
8	1	Напишите специфическое свойство γ — гидроксикислоты — реакцию	ПК 2.5,
	•	этерификации (внутримолекулярное взаимодействие)	111 2.3,
		HOCH ₂ CH ₂ COOH →	ОК 04,
			ОК 07
			ЛР 16
9	1	Покажите уравнением реакции какие карбонильные соединения	ПК 2.5,
	1	получатся при разложении 2-гидроксибутановой кислоты	11K 2.3,
		Total The passionering a rapponent of the total	ОК 04,
			ОК 07
			ЛР 16

Максимальное количество баллов по всему заданию: 16 баллов

Оценочная шкала:

```
10% ошибок – «отлично» (14 16 баллов);
20% ошибок - «хорошо» (12 - 13 баллов);
30% ошибок – «удовлетворительно» (10 - 11баллов)
```

4.15. Задания в тестовой форме по теме «Фенолокислоты»

No	Кол		Форми-
	-во		
Π/Π	бал	Содержание задания	руемые
	лов		ОК, ПК, ЛР
Выполните задания			
1	3	Напишите структурные формулы фенолокислот:	ПК 2.5,
		- 2- гидроксибензойная (салициловая) кислота	
		- 3- гидроксибензойная кислота	ОК 04,
		- 4- гидроксибензойная кислота	016.07
			OK 07
			ЛР 16
2	2	Напишите реакцию получения салициловой кислоты прямым	ПК 2.5,
		карбоксилированием феноксида натрия, проходящую в две стадии	
			OK 04,
			016.07
			OK 07
			ЛР 16
3	2	Напишите уравнения реакций, доказывающие кислотные свойства	ПК 2.5,
		фенолокислот:	
		a aa uu waa aa	ОК 04,
		- с солями слабых кислот	OV 07
		- с гидроксидом натрия	OK 07
			ЛР 16
4	1	Напишите реакцию карбоксильной группы фенолокислот:	ПК 2.5,
		- образование сложных эфиров	010.04
		ооризовиние сложных эфиров	ОК 04,
			OK 07
			ЛР 16
5	1	Ha	-
3	1	Напишите реакцию фенольной гидроксильной группы	ПК 2.5,
		фенолокислот	ОК 04,
		– ацетилирование салициловой кислоты	OK 04,
			ОК 07
			ЛР 16
6	1	Напишите реакцию декарбоксилирования фенолокислот на примере	ПК 2.5,
	•	салициловой кислоты	1111 2.3,
		Casinquiodon Ricatordi	ОК 04,
			OR 07,
			ОК 07
			ЛР 16
	N/L	симальное количество баллов по всему заланию. 10 баллов	

Максимальное количество баллов по всему заданию: 10 баллов

Оценочная шкала:

10% ошибок – «отлично» (9-10 баллов);

20% ошибок - «хорошо» (8 баллов);

30% ошибок – «удовлетворительно» (7 баллов)

5. Перечень вопросов к текущей аттестации

- 1. Основные положения теории А. М. Бутлерова.
- 2. Классификация органических соединений.
- 3. Изомерия органических соединений.
- 4. Классификация органических реакций.
- 5. Электронные эффекты заместителей
- 6. Номенклатура, изомерия, основные методы получения алканов.
- 7. Гибридизация. Строение молекулы метана.
- 8. Химические свойства алканов
- 9. Механизм цепных (гомолитических) реакций замещения в алканах.
- 10. Гибридизация. Строение молекулы этилена.
- 11. Номенклатура, изомерия, основные методы получения алкенов.
- 12. Химические свойства алкенов.
- 13. Механизм реакций электрофильного присоединения в алкенах. Правило Марковникова и Зайцева.
- 14. Механизм реакций радикального присоединения в алкенах (перекисный эффект).
- 15. Номенклатура, изомерия, основные методы получения диеновых углеводородов.
- 16. Химические свойства диеновых углеводородов.
- 17. Номенклатура, изомерия, основные методы получения алкинов.
- 18. Гибридизация. Строение молекулы ацетилена.
- 19. Химические свойства алкинов.
- 20. Номенклатура, изомерия, основные методы получения циклоалканов.
- 21. Химические свойства циклоалканов
- 22. Гибридизация. Строение молекулы бензола.
- 23. Номенклатура, изомерия, основные методы получения бензола и его гомологов.
- 24. Химические свойства бензола и его гомологов.
- 25. Механизм реакций электрофильного замещения в аренах.
- 26. Номенклатура, изомерия, основные методы получения спиртов.
- 27. Строение спиртов. Химические свойства спиртов.
- 28. Классификация спиртов, строение фенола. Сравнение свойств спиртов и фенола.
- 29. Номенклатура, изомерия, основные методы получения фенолов.
- 30. Химические свойства фенолов.
- 31. Номенклатура, изомерия, основные методы получения альдегидов и кетонов.
- 32. Химические свойства альдегидов и кетонов.
- 33. Номенклатура, изомерия, основные методы получения карбоновых кислот.
- 34. Строение карбоксильной группы. Кислотность и ее связь со строением молекулы, образование водородных связей. Химические свойства карбоновых кислот.
- 35. Производные карбоновых кислот и их свойства. Взаимные превращения.
- 36. Классификация азотсодержащих соединений.
- 37. Номенклатура, изомерия, основные методы получения аминов.
- 38. Классификация аминов. Строение аминогруппы. Химические свойства аминов.

Аминокислоты.

39. Классификация углеводов. Моносахариды.

40. Гетероциклические соединения. Классификация. Пиррол, тиофен, фуран